首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 515 毫秒
1.
以介孔分子筛SBA-15为载体、硝酸镍为镍源、磷酸氢二铵为磷源,等体积浸渍法制备了Ni2P/SBA-15催化剂前驱体,然后在H2流中程序升温还原,得到Ni2P/SBA-15催化剂,再用CS2溶液对催化剂进行了硫化处理,制备出了硫化态xCS2-Ni2P/SBA-15催化剂。采用XRD、N2吸附-脱附、XPS对催化剂的结构进行了表征,对催化剂的二苯并噻吩加氢脱硫活性进行了评价,考察了硫化条件对催化剂结构和二苯并噻吩加氢脱硫催化活性的影响。结果表明,xCS2-Ni2P/SBA-15催化剂的物相有Ni2P、Ni12P5、Ni3S2,催化剂的比表面积随硫化溶液中CS2质量分数的增加有一定程度的增加,催化剂表面的Ni以Niδ+和Ni 2+形式存在,P以Pδ-和P5+形式存在。采用5%CS2硫化溶液硫化的催化剂对二苯并噻吩加氢脱硫具有最高的催化活性,380℃时二苯并噻吩的转化率可达99.3%。硫化过程形成的Ni3S2活性物相对二苯并噻吩的转化和直接脱硫都有利。  相似文献   

2.
 以硝酸镍为镍源,磷酸氢二铵为磷源,介孔分子筛 SBA-15为载体,采用共浸渍法制备Ni2P/SBA-15前驱体,再将一定量的偏钨酸铵水溶液引入,采用程序升温还原制备了一系列 W-Ni2P/SBA-15催化剂。采用 XRD、N2吸附-脱附、NH3-TPD 和 XPS 表征了催化剂的结构,并评价了催化剂的二苯并噻吩加氢脱硫活性。结果表明,W-Ni2P/SBA-15催化剂中均只存在Ni2P物相;催化剂的比表面积和孔体积随着W含量的增加先增大后减小;强酸量和总酸量都随W含量的增加有明显增加;W的加入使得催化剂表面的 Niδ+含量有所降低,而 Pδ-含量有所增加;在大于360℃时,催化剂对二苯并噻吩具有很好的深度加氢脱硫活性,并且以直接脱硫生成联苯的脱硫机理为主。  相似文献   

3.
 以介孔分子筛SBA-15为载体,硝酸镍为镍源,磷酸氢二铵为磷源,采用共浸渍法制备了 P/Ni 摩尔比为0.8的 Ni2P/SBA-15催化剂,然后添加 Li、Na、K、Mg、Ca、Sr 和 Ba 等金属助剂,制备了一系列不同金属助剂的M-Ni2P/SBA-15(其中M为 Li、Na、K、Mg、Ca、Sr 和 Ba)催化剂。采用 XRD 对该系列催化剂的结构进行了表征,并以二苯并噻吩质量分数为1%的二苯并噻吩/十氢萘溶液为模型化合物,在微型固定床反应器上评价它们的加氢脱硫(HDS)性能。结果表明,M-Ni2P/SBA-15催化剂的活性相为 Ni2P。不同的金属助剂对催化剂性能的促进作用不同,其中碱土金属Ca能够明显地提高 Ni2P/SBA-15催化剂的 HDS 活性,Ca 质量分数为3.5%的Ca-Ni2P/SBA-15催化剂的 HDS 活性最好。在反应压力3.0 MPa、反应温度360℃的条件下,3.5%Ca-Ni2P/SBA-15催化剂催化的二苯并噻吩 HDS 的转化率达到98.6%。不同金属助剂以不同方式影响加氢脱硫反应的机理。    相似文献   

4.
以SBA-15为载体担载Ni-Mo制备深度加氢脱硫催化剂   总被引:3,自引:1,他引:2  
 以TEOS为硅源、聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物表面活性剂(P123)为模板剂,在水热条件下合成了SBA-15,用XRD、N2 吸附、HRTEM等方法对其进行了表征。以SBA-15作载体,担载Ni-Mo制备了深度加氢脱硫(HDS)催化剂,在高压固定床反应器上以二苯并噻吩(DBT)和4,6-二甲基-二苯并噻吩(4,6-DMDBT)为模型化合物,考察了以SBA-15作载体的催化剂对DBT和4,6-DMDBT的HDS活性。结果表明,合成的SBA-15具有较高的比表面积、均匀的孔径。SBA-15担载Ni-Mo制备的催化剂表现出较高的加氢脱硫活性,其中Ni/Mo原子比为0.25时,催化剂的加氢脱硫活性最高。  相似文献   

5.
介孔分子筛催化剂Co-Mo/SBA-15的制备及其加氢脱硫性能   总被引:5,自引:0,他引:5  
 以介孔分子筛SBA-15为载体,采用浸渍法制备了Co-Mo/SBA-15催化剂。采用XRD、BET、FT-IR、TEM等测试手段对样品进行了分析。用0.5% 二苯并噻吩(DBT)的环己烷溶液为模型化合物,在固定床反应器上评价了Co-Mo/SBA-15的催化活性。结果表明,担载金属后的SBA-15分子筛仍然具有高度有序的二维六方介孔结构,金属颗粒高度分散。当MoO3的负载量增加到25%时,分散度有所降低,部分MoO3以聚集态存在于载体表面。含5%CoO和25%MoO3的Co-Mo/SBA-15催化剂具有最高的加氢脱硫活性,硫质量分数由490μ g/g降至11μ g/g,DBT的脱硫率可达97.75%。  相似文献   

6.
《石油化工》2015,44(4):446
采用低温中和法制备负载型Ni2P/Ti O2-Al2O3催化剂和水热合成法制备Ni2P催化剂,采用XRD技术对两种催化剂进行表征。在小型连续固定床反应器上,以二苯并噻吩和正十二烷的混合液为模型化合物,考察Ni2P/Ti O2-Al2O3和Ni2P催化剂的加氢脱硫性能。实验结果表明,制备Ni2P/Ti O2-Al2O3催化剂的适宜条件为:合成次磷酸镍的反应温度50~55℃、n(P)∶n(Ni)=2.2、溶液p H=2.5、载体n(Ti)∶n(Al)=1∶4、Ni2P的负载量为25%(w),在此条件下制备的Ni2P/Ti O2-Al2O3催化剂的加氢脱硫活性可达97.1%;利用乙二醇-水混合溶液为溶剂,制备非负载型Ni2P催化剂,加氢脱硫活性较高,达到97.9%;综合对比两种催化剂,负载型Ni2P/Ti O2-Al2O3催化剂的性价比更高。  相似文献   

7.
以硅溶胶形式将SiO2引入到AlPO4-5/Al2O3复合载体中,以W-Ni为活性组分制备不同SiO2含量的复合载体催化剂,并对复合载体和催化剂进行X射线衍射(XRD)和H2-程序升温还原(H2-TPR)表征。分别以二苯并噻吩、四氢萘为模型化合物,在微反装置上对催化剂加氢脱硫与芳烃饱和性能进行评价。结果表明:分子筛骨架稳定性好,载体与催化剂制备对分子筛未造成破坏;复合载体中SiO2质量分数为12.0%时,所制备催化剂的加氢脱硫活性和四氢萘加氢饱和活性均最高,与TPR表征结果一致。  相似文献   

8.
介绍了Ni2P催化剂的活性组分结构及其加氢脱硫活性相,综述了Ni2P催化剂催化不同模型含硫化合物加氢脱硫(HDS)机理和HDS反应网络方面的最新研究进展。直接脱硫(DDS)反应路径主要发生在Ni2P催化剂的Ni(1)位,而加氢脱硫(HYD)反应路径主要发生在Ni(2)位。Ni2P表面上的NiPxSy作为活性相在HDS反应中起着重要作用。以Ni2P作为催化剂时,噻吩的HDS过程中有中间体四氢噻吩生成,二苯并噻吩的HDS主要通过DDS反应路径完成,4,6-二甲基二苯并噻吩的HDS主要通过HYD反应路径完成。  相似文献   

9.
以次磷酸镍为原料在氮气气氛中进行低温固相反应,制备Ni2P/SiO2催化剂。用X射线衍射(XRD)、N2吸附脱附和透射电子显微镜(TEM)等分析测试技术对催化剂结构进行表征, Ni2P/SiO2 (负载质量分数为20%)催化剂的比表面积是226.2 m2/g,其活性组分在二氧化硅载体上具有良好的分散性,颗粒大小为5~8 nm。以二苯并噻吩(DBT)为模型化合物,在微型固定床反应器上对催化剂的加氢脱硫性能进行评价, 反应温度为340 ℃,氢压2.0 MPa,Ni2P 负载质量分数为20%时,催化剂对二苯并噻吩的转化率为99.1%,其直接脱硫 (DDS)与加氢脱硫(HDS)的选择性之比为4.5。结果表明,磷化镍(Ni2P)催化剂具有较高的加氢脱硫活性和选择性。  相似文献   

10.
以多级孔Y分子筛为酸性组分,采用孔饱和浸渍法制备了含分子筛的CoMoP/Al2O3加氢催化剂,通过X射线衍射、N2吸附-脱附、高分辨透射电镜、吡啶吸附红外光谱等表征手段对分子筛样品进行物化性质分析,并以4,6-二甲基二苯并噻吩为模型化合物,在固定床高压微反装置上考察多级孔分子筛的加入对4,6-二甲基二苯并噻吩加氢脱硫反应活性的影响。结果表明,多级孔Y分子筛较高的外表面积和介孔体积有利于提高分子筛B酸中心的可接近性。与参比剂CoMoP/Al2O3-Y相比,B酸酸量较高的多级孔Y分子筛催化剂的酸催化反应活性明显增强,总加氢脱硫反应活性提高。随着分子筛强B酸酸量的增加,含Y分子筛催化剂的甲基转移反应活性明显提高。  相似文献   

11.
先将SBA-15介孔分子筛与HY分子筛机械混合,制得复合载体HY-SBA-15,然后将活性金属组分钨和镍负载到复合载体上,可制得加氢脱氮催化剂W-Ni/HY-SBA-15。以喹啉/十二烷溶液为模拟原料油,在微型固定床加氢反应器上研究了载体组成和加氢工艺条件对脱氮效果的影响。结果表明,复合载体中HY分子筛的最佳质量分数为10%;在反应温度为330℃,压力为4.0 MPa,V(氢气)/V(模拟原料油)为600,体积空速为2.0 h-1的最佳工艺条件下,模拟原料油的脱氮率可达97.2%。  相似文献   

12.
以偏钛酸形式将TiO2引入到AlPO4-5/Al2O3复合载体中,以W-Ni为活性金属制备不同TiO2含量的复合载体催化剂。采用紫外漫反射光谱(DRS)、激光拉曼光谱(LRS)、程序升温还原(TPR)等对钛改性AlPO4-5/Al2O3复合载体和催化剂进行表征。结果表明,TiO2引入复合载体,促进了Ni与W结合,有效抑制镍离子扩散到氧化铝晶格中,减少了惰性镍铝尖晶石的形成,有利于发挥镍的助催化作用;TiO2的引入使得钨物种趋向于以多核聚钨酸WO3形式存在;镍、钨物种在TiO2改性的复合载体上更容易被还原,有利于催化剂的硫化。  相似文献   

13.
固载于SBA-15分子筛中的同双核金属配合物催化剂   总被引:3,自引:1,他引:2  
高丽娟  李瑞丰  田永华 《石油化工》2006,35(11):1038-1043
合成了3种同双核金属配合物[M2LCl3]Cl(L代表配体三亚乙基四胺,M代表Co,Cu,Cr),采用微波加热法合成了SBA-15分子筛,采用浸渍法将3种同双核金属配合物分别固载在表面官能化的SBA-15分子筛(SBA-15-NH2分子筛)中制得负载型催化剂。傅里叶变换红外光谱、X射线衍射、紫外可见光谱和热分析表征结果表明,同双核金属配合物被固载后,其结构仍保持完整。以环己烷氧化反应为探针反应,考察了[Co2LCl3]Cl/SBA-15-NH2,[Cu2LCl3]Cl/SBA-15-NH2,[Cr2LCl3]Cl/SBA-15-NH2催化剂的活性,环己烷转化率分别为11.0%,49.5%,57.9%;对于[Cr2LCl3]Cl/SBA-15-NH2催化剂,当分别以乙睛、丙酮和冰醋酸为溶剂时,环己烷转化率分别为57.9%,52.1%,34.2%,3次重复实验的环己烷转化率分别为57.9%,47.8%,46.5%,表明该催化剂具有较好的活性和重复使用性。  相似文献   

14.
采用水热法原位合成了La掺杂的La/SBA-15催化剂,采用XRD、N2吸附-脱附测定等手段对样品进行了表征,考察了La/SBA-15催化剂对苯/H2O2液相氧化合成苯酚反应的催化活性。结果表明,制得的La/SBA-15复合材料保持载体SBA-15高度有序的介孔二维六角孔道结构。在反应温度323K,以1mol苯计的催化剂用量0.75g、溶剂乙腈用量250mL,H2O2/苯的摩尔比为2,反应时间5 h的条件下,苯的转化率为7.2%,苯酚选择性高达90%。且La/SBA-15催化剂重复使用6次,催化活性基本保持稳定。  相似文献   

15.
采用酸性溶胶凝胶法,以P123为模板剂合成了核壳型HZSM-5@SBA-15复合分子筛。在结构性质以及甲醇转化制芳烃催化性能方面,将HZSM-5@SBA-15与HZSM-5@SiO2进行对比。这两种催化剂的SiO2壳层都可以减少HZSM-5的酸性位,进而减少了催化剂内积碳的形成。然而,在有序介孔SBA-15壳层中,芳烃和积碳前驱体相比于SiO2壳层中更容易扩散。因此,HZSM-5@SBA-15在催化甲醇芳构化反应中表现出更高的BTX选择性和更长的寿命。HZSM-5@SBA-15的寿命比HZSM-5@SiO2长50个小时,此条件下的BTX选择性为56%。  相似文献   

16.
乙二胺丙基功能化的SBA-15介孔分子筛的合成及催化性能   总被引:1,自引:0,他引:1  
王月娟  马静萌  孙春凤  罗孟飞 《石油化工》2005,34(11):1086-1090
以聚乙二醇-聚丙三醇-聚乙二醇为模板剂、正硅酸乙酯为硅源,在强酸和水热条件下合成了SBA-15介孔分子筛,用氯丙基三甲氧基硅烷和乙二胺对分子筛进行乙二胺丙基功能化。运用X射线衍射、傅里叶红外光谱、N2吸附-脱附等手段对功能化前后的SBA-15介孔分子筛进行了表征。以苯甲醛与乙酰乙酸乙酯的Knoevenagel缩合为模型反应,研究了功能化后的SBA-15介孔分子筛的碱催化性能。实验结果表明,功能化后的SBA-15介孔分子筛对反应具有催化活性,同时反应温度、反应时间、溶剂和活性组分的负载量等条件对SBA-15介孔分子筛的催化活性都有影响。催化活性随着催化剂活性组分负载量的增加而提高,但存在一个最佳值。当达到最佳负载量即硅烷偶联剂与SBA-15介孔分子筛的质量比为5∶1时,以乙醇为溶剂在80℃下反应90m in,苯甲醛的转化率,最大达到29.2%。  相似文献   

17.
采用水热法原位合成了镧掺杂的La/SBA-15催化剂,考察了La/SBA-15催化下甲苯液相氧化合成苯甲酸的催化活性。通过XRD、N2吸附-脱附测定等手段对样品进行了表征。结果表明,制得的La/SBA-15复合材料保持了载体SBA-15高度有序的介孔二维六角孔道结构。考察了La/SBA-15对液相氧化甲苯合成苯甲酸的催化性能,在反应温度423K,催化剂用量1.2g/mol甲苯,溶剂二氯甲烷用量400ml/mol甲苯,氧气压力维持5MPa,反应时间5h的条件下,甲苯转化率为42.6%,中间氧化产物苯甲醛的选择性仅4.1%,最终产品苯甲酸选择性高达95.5%。且La/SBA-15催化剂重复使用6次,催化活性基本保持稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号