首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
以某公路隧道为研究对象,采用开启6个竖井的双向均衡排烟模式。利用FDS对纵向通风与坡度影响下的竖井排烟效果进行数值模拟,通过分析不同工况下竖井内的烟气扩散特性、温度场分布及烟气质量浓度变化,获得隧道内竖井排烟速率的变化规律。结果表明:火源位于隧道中间时,在无纵向通风和纵向风速较小时,竖井下方均会出现烟气层吸穿现象,排烟速率较低;风速增加,火源下游的竖井排烟速率较大;风速大于2.0 m/s时,火源下游的竖井出现边界层分离现象,排烟速率降低;改变隧道坡度并不影响竖井下方的自然排烟效果。  相似文献   

2.
以某大型地铁换乘车站为研究对象,根据车站通风排烟系统的设置情况,将站台火灾排烟模式分为只开启站台排烟风机进行排烟和同时开启站台排烟风机和隧道风机进行排烟2种。选用计算流体力学软件FDS,将火源设置在地下二层站台中部区域,建立地铁车站三维模型,采用大涡模拟方法对站台两种排烟模式的排烟效果进行模拟。对站台内烟气蔓延、能见度和补风风速的分析结果表明:开启车站隧道风机进行辅助排烟可以有效地控制烟气蔓延到站厅,增加了楼扶梯口处的补风风速,达到了更好的防排烟效果。  相似文献   

3.
纵向通风目前是我国长隧道使用最多的通风排烟方式。通过1∶ 10隧道模型火灾排烟试验,利用激光片光观测火灾烟气分层结构,分析了纵向通风对火灾烟气分层结构的影响;通过数值模拟,研究了隧道采用纵向通风排烟的效果。结果表明:在无风情况下,火灾初期烟气能够较好地维持在隧道顶部,与空气分层界限明显;开启纵向排烟后,能够有效抑制火灾烟气向火源上游蔓延,但烟气分层结构遭到破坏并随着风速增加逐渐消失,火源下游区域能见度下降;纵向排烟风速维持在临界风速及以下,可降低纵向风对烟气分层的影响。  相似文献   

4.
利用FDS数值模拟对某3 300m城市隧道组合通风排烟方式的火灾烟气控制效果进行了研究。根据不同烟气控制方案下2m高处的温度和能见度结果的分析可知,对于采用组合通风排烟方式的城市隧道,当发生20MW的火灾时,应控制纵向风速在2.5m/s左右并且只开启火源下游的排烟口,可以较好地保证火源上下游人员的安全。  相似文献   

5.
采用FDS(Fire Dynamics Simulator)数值仿真手段对青岛市某在建三层岛式地铁站台火灾情景进行模拟研究.在站台层楼梯处设置一定强度的火源,启动站台通风系统和可调通风型站台门上方的辅助排烟通风窗,模拟了四种不同通风窗开启模式下烟气的蔓延规律,分析了不同通风窗开启模式对烟气分布、温度、CO浓度和可见度的瞬时演化影响.结果表明,在当前的通风设计条件下,不同通风窗开启模式对站台层烟气蔓延具有显著影响.火灾发生360s时,模式三平均温度较模式一、二、四分别低9.2%,5.4%,2.2%;模式三平均CO浓度较模式一、二、四分别低44.1%,33.6%,7.5%;另外,模式三、四的可见度比模式一、二的高.因此,综合考虑烟气浓度分布、烟气温度、CO浓度和可见度,通风窗开启模式三,即开启双侧站台靠近火源的占总通风口面积一半的通风口具有更好的辅助排烟效果.  相似文献   

6.
隧道火灾是运营公路隧道的主要灾害。为有效控制隧道火灾,采用理论分析和数值模拟相结合的方法研究了设排烟道隧道的火灾烟气逆流长度与临界风速。以国内常见的双车道隧道尺寸建立模型,分析了排烟速率和纵向通风速率对烟气逆流长度的影响,提出了临界风速的预测模型。并将其通风效果与常规未设排烟道的纵向通风做了比较。结果表明:未设排烟道时,纵向风速还未达到临界风速时,火灾下游烟气的层化状态就已破坏。设排烟道能及时排出火灾产生的烟气,有利于保持烟气的层化状态,有效改善火灾时的隧道环境,为火灾下游人员的疏散救援提供了有利条件。同时,设置排烟道有利于减小逆流长度和临界风速。随着排烟速率的增大,相应的临界风速呈指数函数递减的特性。  相似文献   

7.
已有的扁平空间排烟口开启时机研究中排烟口均为同时开启,为探索新型排烟口开启方式,以某小区地下停车场的一个防烟分区为研究对象,利用FDS火灾模拟软件建立模型并模拟,分析各工况烟气蔓延时间、烟气浓度、烟气层高度等数据对比排烟口按照烟气蔓延方向顺序开启与同时开启的排烟效果,并研究排烟口开启阈值与火源位置的影响,得到结论:当火灾发生在远离出口处时,烟气蔓延至下游出口所需时间随排烟口开启阈值增加而缩短,排烟口开启时机对烟气水平方向浓度分布的影响仅表现在烟气扩散至下游出口前;当火灾位置在远离出口处时,设置当烟气蔓延至排烟口位置时排烟口开启,地下停车场5个出口处总烟气单位长度消光率与排烟口同时开启相比低10%/m,250 s至300 s出口处平均烟气层高度高0.11m以上,排烟效果最佳;改变本文地下停车场模型火源位置,烟气蔓延至排烟口位置后开启排烟对烟气浓度分布及烟气层高度控制仍然最好,可见扁平空间内以烟气蔓延至排烟口位置作为排烟口开启条件,排烟效果最佳,且不受火源位置影响。  相似文献   

8.
以某岛式地铁站为研究对象,采用FDS对不同火源功率下的地铁火灾进行模拟,分析地铁火灾中烟气蔓延规律及地铁站台与车站轨行区送排风模式的优化组合。通过建立地铁火灾模型和大涡模拟总结地铁火灾发生时,烟气蔓延、温度分布以及能见度的一般规律,对比站台区域采取排烟模式和送风模式的排烟效果。模拟结果显示,在火源功率为2 MW时,站台区域采取排烟模式与送风模式均可。当火源功率为4 MW时,站台区域采取送风模式会有更好的烟气控制效果。  相似文献   

9.
中国逐渐发展成为世界上隧道和地下工程最多的国 家,其长隧道数量和长度跻身世界前列。据统计,火灾中85%的 人员死亡是由热烟气造成的,目前隧道中采用较为广泛的排烟系 统有纵向排烟系统、集中排烟系统和横向排烟系统,而针对长隧道 来说,我国广泛采用的是竖井式纵向通风,因此,研究纵向通风与 竖井排烟综合效应下隧道火灾烟气流动特性及温度分布规律具有 重要意义。本文建立了1:10 缩尺寸竖井隧道模型,主隧道长度 16.5 m,宽度1.3 m,高度0.65 m;竖井通过排烟横通道与主隧道 连接,排烟横通道设置在主隧道侧面中部,尺寸为1.2 m 长、0.6 m 宽、0.4 m 高;竖井横截面为半径0.6 m 的1/4 圆,高4.6 m。在 竖井隧道模型中开展了一系列油池火实验,选取2 种方形燃烧池 (20 cm×20 cm、23 cm×23 cm)作为火源,设置2 个纵向火源位置 (位置A:火源中心线与排烟横通道中心线距离0.375 m;位置B: 火源中心线与排烟横通道中心线距离1.375 m),7 种纵向通风风 速(0,0.18,0.27,0.35,0.44,0.52,0.69 m/s),定量分析不同工 况下温度分布及烟气逆流长度。研究结果表明:当无纵向通风时, 火焰与隧道地板垂直,且呈轴对称形态;当有纵向通风时,火焰向 下游偏移,且纵向通风风速越大,火焰向下游偏移越明显;当纵向 通风风速为0 m/s 时,由于竖井的存在,火源上、下游两侧烟气温 度分布并非对称,火源下游(竖井侧)烟气温度下降速度较快,与单 洞隧道烟气温度分布明显不同;随纵向通风风速增加,烟气逆流长 度和烟气温度减小,而最大温度偏移距离整体呈增加趋势;当无量 纲纵向通风风速v′<0.19 时,主隧道最大温升△Tmax 与Q2/3/ Hef 5/3 呈正比,而当无量纲纵向通风风速v′>0.19 时,主隧道最大 温升△Tmax 与Q? /(vb1/3Hef 5/3)呈正比,但常数系数均小于Li 等预 测模型中的常数系数;竖井隧道内无量纲纵向烟气温度分布符合 Fan 和Ji 等建立的纵向温度衰减模型,衰减系数k′在1.36~1.63 范围内变化,但其值明显大于单洞隧道纵向温度衰减系数k′;另 外,当火源位于位置A 时,最大烟气温度低于火源位于位置B 时 的最大烟气温度,无量纲纵向烟气温度衰减速度慢于火源位于位 置B 时衰减速度。  相似文献   

10.
摘 要:为了解决特长海底隧道发生火灾时的排烟问题,提出利用服务通道和联络横通道辅助送风的通风方案。利用火灾动力学模拟软件(FDS),建立隧道火灾通风模型,通过研究通风排烟时服务隧道内补风量与横通道开启数量对火灾烟气的控制效果,确定通风系统的技术参数。结果表明:火灾发生时,事故隧道内纵向通风风速2 m/s,同时开启火源上游3 个横通道,并在服务隧道两端各施加1.3 m/s 纵向通风风速,既可将烟气控制在火源一侧,同时不影响人员安全疏散,其控烟效果与通风网络解算结果一致。采用横通道辅助送风的通风方案,控制特长海底隧道内火灾烟气蔓延是具有理论可行性的。  相似文献   

11.
胶州湾海底隧道防排烟设计探讨   总被引:1,自引:1,他引:0  
分析海底隧道火灾烟气的特点及危害.结合青岛胶州湾海底隧道情况,运用FDS模拟分析海底隧道半横向通风在各种情况下的排烟效果,通过改变排烟口数量、排烟量以及隧道内纵向风速等参数研究烟气运动规律.结果表明,排烟量相同时,开启的排烟口越少,越有利于控制烟气向两端蔓延;存在纵向风时,火源上游排烟口越少,烟气抑制效果越好,烟气运动速率随纵向风速的增大而减小.  相似文献   

12.
陶平  朱常琳 《建筑科学》2012,28(8):77-82
本文采用FDS软件,对西安地铁2号线某岛式站台端部火源强度为5 MW的火灾工况进行了数值模拟.在采用事故风机(TVF)+站台空调通风与回风(SEF)+站台下侧排烟的强制通风( UPE)模式下,分析了屏蔽门的不同开启模式对能见度、烟气温度、CO浓度、热辐射和新风风速的影响.结果表明,着火6 min时,强制通风可以使站台和进入站台层的楼梯人口处的温度小于60℃,CO浓度小于312.5 mg/m3 (250 ppm);全部或部分开启屏蔽门可以实现站台烟气层向站台隧道的抽吸,增加站台安全撤离区域.  相似文献   

13.
针对地铁长区间隧道中着火列车停在中间竖井处的火灾情况,搭建1∶10比例的隧道模型并开展火灾实验,研究烟气自然填充时不同竖井高度、机械通风时不同纵向风速和不同竖井排烟风速下隧道内的顶棚温度分布、人眼特征高度处温度分布和CO浓度分布规律,得出最佳的排烟模式。结合经济投入对比分析,选择既满足排烟效果又经济节能的排烟方式。结果表明,排烟时采用最低的竖井高度10 m,不开启竖井排烟设施,只通过竖井前后的纵向通风速度v1=1.6 m/s,v2=2.5 m/s排烟,此时的节能效果最优。研究结果可为地铁长区间隧道的排烟节能优化提供一定的参考。  相似文献   

14.
《Planning》2016,(7)
为了探究火灾发生后风机启动时间对地铁区间烟气控制的影响,现以内径为5.5m圆形盾构地铁区间隧道为研究对象,采用数值模拟方法研究不同火源功率(5、7.5、10 MW)下隧道内烟气的温度分布,分析了4种火灾工况下隧道顶部最高温度值以及出现位置,研究了风机延迟启动时间对隧道内烟气温度分布的影响。结果表明,隧道顶部最高温度随火源功率增大而增高;纵向通风风速会造成隧道顶部最高烟气温度区域向通风方向偏移,但随着火源功率增加,排烟风速的影响会逐渐减弱;延迟启动风机会破坏烟气层的稳定性,导致烟气沉降到列车的车厢位置,从而会影响乘客安全疏散。  相似文献   

15.
通过开展相似试验,研究在相向射流与竖井自然排烟组合模式下,火源位置、风速和火源功率对烟气控制段长度的影响。试验考虑了3种组况,53种工况,通过改变火源位置、风速和火源功率,分析讨论了不同工况下火源烟气控制段长度。试验表明,增加上游(距离火源更近端)风速,会导致上游烟气控制段减少;增加下游(距离火源更远端)的风速,烟气控制段长度会受到火源功率、火源位置等多种因素的耦合作用。增大火源功率会增加烟气热浮力,使下游机械风对烟气的影响减弱。  相似文献   

16.
公路隧道火灾烟气的控制一般通过固定排烟系统来实现,但是固定系统失效时,移动式排烟就成为控制和排除烟气的关键方式。设定风机风速为15 m/s,火源功率为5MW,风机角度为0°、10°、15°、20°,利用FDS模拟得到不同倾角下移动式风机排烟对公路隧道内火灾烟气流动的影响。结果表明:移动风机的倾角为0°时不能阻止烟气逆流;有倾角的工况下隧道界面上方风速比下方风速大;倾角大于15°时40s内能将烟气逆流控制在上游一定位置。  相似文献   

17.
数值模拟研究了重点排烟模式中诱导通风对公路隧道排热效率的影响。选取隧道平坡度段20 MW火源功率,无排烟、无诱导通风、不同诱导通风速率的13组火灾工况,分析不同火灾工况下烟气层运动状态和排烟口、排烟道的排热效率。结果表明,开启排烟风机后排烟道的排热效率为41%,设置纵向诱导通风后,排烟道排热效率为22%~25%;随着诱导通风速率增加,隧道两端排烟口的排热效率增加,中间排烟口的排烟效率降低。  相似文献   

18.
采用Fluent软件,选择RNG k-ε模型对某地铁站站台端部火源强度为5 MW的不同火灾工况进行数值模拟,在站台原有的通风系统加上屏蔽门作为排烟口的通风模式下,分别分析了屏蔽门不同开启模式对烟气速度、温度、浓度的影响。研究结果表明,地铁站台着火6 min时,屏蔽门作为排烟口进行排烟可使站台层的楼梯口处温度小于452 K,气流流动速度大于1.5 m/s;屏蔽门的开启可以实现将站台层的烟气向隧道抽吸,扩大站台安全区域。  相似文献   

19.
采用FDS对地铁隧道火灾时不同的横向火源位置以及不同竖井长宽比情况下自然排烟的效果进行数值模拟研究,分析了隧道内的烟气扩散特性及温度和能见度的分布状况。结果表明,火源位于隧道的不同横向位置只影响近火源区的烟气温度,不会对竖井的排烟效果产生影响;竖井长宽比越大,排烟效果相对越好。结果可为地铁工程排烟设计提供参考。  相似文献   

20.
侧向集中排烟隧道火灾烟气控制优化   总被引:1,自引:0,他引:1  
针对某特长沉管公路隧道采用侧向集中排烟系统的实际,采用FDS对隧道内温度场分布、2 m高处能见度分布、烟气蔓延范围、排烟效率等指标进行定量分析,获得合理的烟气控制方案.结果表明:火源位于-3%坡度段内,火源功率50MW的合理纵向诱导风速为2.5 m/s,合理排烟口开启方案为上游开启1组/下游开启4组排烟口;0坡度段合理的烟控方案为两端排烟,上游开启2组/下游开启3组排烟口,并配合1.5m/s的纵向诱导风速;3%坡度段合理的烟控方案为下游端排烟,上游开启2组/下游开启3组排烟口,并配合1 m/s的纵向诱导风速.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号