首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
赵伟  王爽  赵东洋 《工矿自动化》2023,(11):121-128
为解决煤矿井下无人驾驶电机车由于光照不均、高噪声等复杂环境因素导致的多目标检测精度低及小目标识别困难问题,提出一种基于SD-YOLOv5s-4L的煤矿井下无人驾驶电机车多目标检测模型。在YOLOv5s基础上进行以下改进,构建SD-YOLOv5s-4L网络模型:引入SIoU损失函数来解决真实框与预测框方向不匹配的问题,使得模型可以更好地学习目标的位置信息;在YOLOv5s头部引入解耦头,增强网络模型的特征融合与定位准确性,使得模型可以快速捕捉目标的多尺度特征;引入小目标检测层,将原三尺度检测层增至4层,以增强模型对小目标的特征提取能力和检测精度。在矿井电机车多目标检测数据集上进行实验,结果表明:SD-YOLOv5s-4L网络模型对各类目标的平均精度均值(m AP)为97.9%,对小目标的平均检测精度(AP)为98.9%,较YOLOv5s网络模型分别提升了5.2%与9.8%;与YOLOv7, YOLOv8等其他网络模型相比,SD-YOLOv5s-4L网络模型综合检测性能最佳,可为实现矿井电机车无人驾驶提供技术支撑。  相似文献   

2.
虽然基于深度学习的目标检测算法在道路场景中的目标检测方面已经取得了很好的效果,但是对于复杂道路场景中的密集目标,远处的小尺度目标检测精度低,容易出现漏检误检的问题,提出一种改进YOLOv7的复杂道路场景目标检测算法。增加小目标检测层,增加对小目标的特征学习能力;采用K-means++重聚类先验框,使得先验框更贴合目标,增加网络对目标的定位精度;采用WIoU(Wise-IoU)损失函数,增加网络对普通质量锚框的关注度,提高网络对目标的定位能力;在颈部和检测头引入协调坐标卷积(CoordConv),使网络能够更好地感受特征图中的位置信息;提出P-ELAN结构对骨干网络进行轻量化处理,降低算法参数量和运算量。实验结果表明,该改进算法在华为SODA10M数据集下的mAP达到64.8%,比原算法提高2.6个百分点,模型参数量和运算量分别降低12%和7%,达到检测精度和检测速度的平衡。  相似文献   

3.
唐俊  李敬兆  石晴  杨萍  王瑞 《工矿自动化》2023,(11):46-52+66
基于深度学习的目标检测算法在异物检测中具有较好的识别效果,但模型内存需求大,检测速度慢;轻量化深度学习网络能够大幅减少模型内存需求,提升检测速度,但在井下弱光环境中检测精度低。针对上述问题,提出了一种基于Faster-YOLOv7的带式输送机异物实时检测算法。通过限制对比度自适应直方图均衡化算法(CLAHE)进行图像增强,提高弱光环境中异物对比度;基于Mobilenetv3对YOLOv7主干网络进行轻量化设计,减少YOLOv7模型的计算量、参数量;添加有效通道注意力机制,缓解因特征通道数减少而导致的高层特征信息丢失问题;采用Alpha-IoU作为损失函数提高异物检测精度。实验结果表明:(1) Faster-YOLOv7的初始损失为0.143,最终稳定在0.039左右。(2) Faster-YOLOv7的检测速度可达42帧/s,较YOLOv5、YOLOv7分别提升了17,20帧/s;Faster-YOLOv7内存为14 MiB,较YOLOv5、YOLOv7分别降低了29,57 MiB;检测准确率达91.3%,较YOLOv5提升了8.8%。(3)将SSD、YOLOv5、轻量化YOLOv7、...  相似文献   

4.
针对狭小空间中目标相互遮挡导致轻型检测网络存在大量漏检、分类错误等问题,基于YOLOv4-tiny提出一种自适应非极大抑制(adaptive non-maximum suppression,A-NMS)的多尺度检测方法。在骨干网络引入大尺度特征图优化策略和金字塔池化模型,增强遮挡目标显著区域特征;设计内嵌空间注意力的双路金字塔特征融合网络,提升浅层细节特征与高级语义信息的融合能力;提出区域目标密度与边界框中心距离因子相关联的动态NMS阈值设定方法,并在后处理阶段代替传统IoU-NMS算法,进一步减少漏检。实验结果表明,与YOLOv4-tiny算法相比,改进算法在公开数据集PASCAL VOC07+12和自制数据集上mAP值分别提高2.84个百分点和3.06个百分点,FPS保持在87.9,对遮挡目标的检测能力显著提升,满足移动端对狭小复杂场景实时检测的需求。  相似文献   

5.
针对现有基于深度学习的电铲检测方法未能很好地平衡检测速度与检测精度的问题,提出了一种改进YOLOv7模型,并将其用于矿用电铲检测。该模型以YOLOv7模型为基础,在主干网络中采用轻量化GhostNet网络进行特征提取,在颈部网络中采用轻量级GSConv替换部分普通卷积,以减少模型参数量和计算量,提高模型检测速度;考虑到轻量化改进后模型参数量减少对特征信息提取能力的影响,在不增加计算量的前提下,对颈部网络进行进一步改进,在扩展高效层聚合网络(ELAN)中嵌入坐标注意力机制(CA),同时利用双向特征金字塔网络(BiFPN)改进路径聚合网络(PANet),以提高网络对特征信息的提取能力,进而有效提高模型检测精度。实验结果表明,与YOLOv7模型相比,改进YOLOv7模型的参数量减少了75.4%,每秒浮点运算次数减少了82.9%,检测速度提高了24.3%;相较于其他目标检测模型,改进YOLOv7模型在检测速度和检测精度方面取得了良好的平衡,满足在露天煤矿场景下对电铲进行实时、准确检测的需求,为嵌入到移动设备中提供了有利条件。  相似文献   

6.
煤矿井下的行人检测对于保障井下作业人员的安全至关重要。煤矿井下光照暗、粉尘大,直接用YOLOv2检测井下行人,准确率低,仅达到54.3%。针对此问题,以YOLOv2网络为基础,结合了金字塔场景解析网络(PSPnet)中的金字塔池化模块,充分利用图片的上下文信息,提出了YOLOv2_PPM网络。在井下行人检测数据集上进行实验,YOLOv2_PPM网络的准确率提升到63.5%,较YOLOv2网络增加了9.2%,且速度达到了39?帧/s(FPS)。当输入图片的大小为480×480时,检测的准确率提升到71.6%,同时速度为28?帧/s,满足了实时检测的要求。  相似文献   

7.
针对目标检测过程中存在的小目标漏检问题,提出一种基于注意力机制和多尺度上下文信息的改进YOLOv5目标检测算法。首先,在特征提取结构中加入多尺度空洞可分离卷积模块(MDSCM)以提取多尺度特征信息,在增大感受野的同时避免小目标信息的丢失;其次,在主干网络中添加注意力机制,并在通道信息中嵌入位置感知信息,进一步增强算法的特征表达能力;最后,使用Soft-NMS(Soft-Non-Maximum Suppression)代替YOLOv5使用的非极大值抑制(NMS),降低检测算法的漏检率。实验结果表明,改进算法在PASCAL VOC数据集、DOTA航拍数据集和DIOR光学遥感数据集上的检测精度分别达到了82.80%、71.74%和77.11%,相较于YOLOv5,分别提高了3.70、1.49和2.48个百分点;而且它对图像中小目标的检测效果更好。因此,改进的YOLOv5可以更好地应用到小目标检测场景中。  相似文献   

8.
针对遥感图像目标检测过程中存在的背景复杂、目标特征不明显、小目标排列密集的问题,基于YOLOv7算法,提出了一种改进的遥感图像目标检测算法YOLOv7-RS(YOLOv7-Remote Sensing),提高了遥感图像的目标检测精度。首先,向特征提取网络中融合SimAM减少背景噪声的干扰;其次,提出了D-ELAN网络增强遥感目标的特征提取能力;再次,利用SIOU损失函数以提高算法模型的收敛速度;最后,优化了正负样本分配策略,改善了遥感图像中小目标密集排列时的漏检问题。实验结果表明,YOLOv7-RS在NWPU VHR-10和DOTA数据集上的mAP达到95.4%和74.1%,相较于其他主流算法有了明显提升。  相似文献   

9.
为了准确且实时地检测到交通标志指示牌,减少交通事故的发生和推动智慧交通的发展,针对现有的道路交通标志检测模型存在的精度不足、权重文件大、检测速度慢的问题,设计了一种基于计算机视觉技术的改进YOLOv5s检测算法YOLOv5s-GC.首先,使用copy-paste进行数据增强后再送入网络进行训练,加强对小目标的检测能力;然后,引入Ghost来构建网络,削减原网络的参数和计算量,实现轻量化模型;最后,将坐标注意力机制(coordinate attention)融合到骨干网络里,增强对待测目标的表示和定位能力,提高识别精度.实验结果表明,YOLOv5s-GC模型相比于原YOLOv5s模型,参数数目减少了12%,检测速度提高了22%,平均精度达到了94.2%,易于部署且能满足实际自动驾驶场景中对识别交通标志的速度和准确度要求.  相似文献   

10.
针对遥感图像目标尺寸小、目标方向任意和背景复杂等问题,在YOLOv5算法的基础上,提出一种基于几何适应与全局感知的遥感图像目标检测算法。首先,将可变形卷积与自适应空间注意力模块通过密集连接交替串联堆叠,在充分利用不同层级的语义和位置信息基础上,构建一个能够建模局部几何特征的密集上下文感知模块(DenseCAM);其次,在骨干网络末端引入Transformer,以较低的开销增强模型的全局感知能力,实现目标与场景内容的关系建模。在UCAS-AOD和RSOD数据集上与YOLOv5s6算法相比,所提算法的平均精度均值(mAP)分别提高1.8与1.5个百分点。实验结果表明,所提算法能够有效提高遥感图像目标检测的精度。  相似文献   

11.
在真实场景下准确实时检测小目标交通标志对自动驾驶有重要意义,针对YOLOv5算法检测小目标交通标志精度低的问题,提出一种基于改进YOLOv5的小目标交通标志实时检测算法。借鉴跨阶段局部网络思想,在YOLOv5的空间金字塔池化上设置新的梯度路径,强化特征提取能力;在颈部特征融合中增设深、浅卷积特征的可学习自适应权重,更好地融合深层语义和浅层细节特征,提高小目标交通标志的检测精度。为验证所提算法的优越性,在TT100K交通标志数据集上进行了实验验证。实验结果表明所提算法在小目标交通标志上的平均精度均值(mean average precision,mAP)为77.3%,比原始YOLOv5提升了5.4个百分点,同时也优于SSD、RetinaNet、YOLOX、SwinTransformer等算法的检测结果。所提算法的运行速度为46.2 frame/s,满足检测实时性的要求。  相似文献   

12.
针对交通场景中由光照、遮挡、目标小以及背景复杂等因素导致目标检测精度低,易出现漏检和误检问题的情况,提出了一种基于YOLOv7的交通目标检测算法;该算法在主干网络中融入多头注意力机制,以增强网络特征学习能力,从而更好地捕获数据和特征内部的相关性;在YOLOv7颈部网络引入协调注意力模块(CA),将位置信息嵌入到注意力机制中,忽略无关信息的干扰,以增强网络的特征提取能力;增加一个多尺度检测网络,以增强模型对不同尺度目标的检测能力;将CIoU损失函数更改为SIoU函数,以减少模型收敛不稳定问题,提高模型的鲁棒性;实验结果表明,改进的算法在BDD100K公开数据集上的检测精度和速度分别达到了59.8% mAP和96.2 FPS,相比原算法检测精度提高了2.5%;这表明改进的算法在满足实时性要求的同时,具备良好的检测精度,适用于复杂情况下的交通目标检测任务。  相似文献   

13.
为了进一步提高多尺度目标检测的速度和精度,解决小目标检测易造成的漏检、错检以及重复检测等问题,提出一种基于改进YOLOv3的目标检测算法实现多尺度目标的自动检测。首先,在特征提取网络中对网络结构进行改进,在残差模块的空间维度中引入注意力机制,对小目标进行关注;然后,利用密集连接网络(DenseNet)充分融合网络浅层信息,并用深度可分离卷积替换主干网络中的普通卷积,减少模型的参数量,提升检测速率。在特征融合网络中,通过双向金字塔结构实现深浅层特征的双向融合,并将3尺度预测变为4尺度预测,提高了多尺度特征的学习能力;在损失函数方面,选取GIoU(Generalized Intersection over Union)作为损失函数,提高目标识别的精度,降低目标漏检率。实验结果表明,基于改进YOLOv3(You Only Look Once v3)的目标检测算法在Pascal VOC测试集上的平均准确率均值(mAP)达到83.26%,与原YOLOv3算法相比提升了5.89个百分点,检测速度达22.0 frame/s;在COCO数据集上,与原YOLOv3算法相比,基于改进YOLOv3的目标检测算法在mAP上提升了3.28个百分点;同时,在进行多尺度的目标检测中,算法的mAP有所提升,验证了基于改进YOLOv3的目标检测算法的有效性。  相似文献   

14.
针对小目标检测及目标被遮挡的问题, 本文基于VisDrone2019数据集构建相应交通场景, 提出一种小目标检测算法. 首先, 充分利用主干网络的浅层特征改善小目标漏检的问题, 通过在YOLOv7算法原有的网络结构上增加小目标检测层P2, 并在P2小目标检测层的模型上为特征融合网络添加多层次浅层信息融合模块, 从而提高算法小目标检测效果. 其次, 使用全局上下文模块构建目标与全局上下文的联系, 增强模型区分目标与背景的能力, 改善目标因遮挡而出现特征缺失情况下的被检测效果. 最后, 本文采用专为小目标设计的损失函数NWD代替基线模型中的CIoU损失函数, 从而解决了IoU本身及其扩展对微小物体的位置偏差非常敏感的问题. 实验表明, 改进后的YOLOv7模型在航拍小目标数据集VisDrone2019 (测试集和验证集)上面mAP.5:.95分别有2.3%和2.8%的提升, 取得了十分优异的检测效果.  相似文献   

15.
针对无人机航拍图像中目标小、尺度不一和背景复杂等导致检测精度低的问题,提出一种基于改进YOLOv5的无人机航拍图像目标检测算法DY-YOLOv5。该算法在检测头部分利用具有多重注意力机制的目标检测头方法Dynamic Head,提升检测头在复杂背景下的检测表现。在原模型neck部分增加一次上采样和Concat操作,并执行一个包含极小、小、中目标的多尺度特征检测,提升模型对中、小目标的特征提取能力。引入密集卷积网络DenseNet,将其与YOLOv5s主干网络的C3模块进行融合,提出C3_DenseNet模块,以加强特征传递并预防模型过拟合。在VisDrone2019数据集上应用DY-YOLOv5算法,平均精度均值(mAP)达到了43.9%,较原YOLOv5算法提升了11.4个百分点。召回率(Recall)为41.7%,较原算法提升了9.0个百分点。实验结果证明,改进算法显著提高了无人机航拍图像目标检测的精度。  相似文献   

16.
王程  刘元盛  刘圣杰 《计算机工程》2023,49(2):296-302+313
行人检测在无人驾驶环境感知领域具有重要应用。现有行人检测算法多数只关注普通大小的行人目标,忽略了小目标行人特征信息过少的问题,从而造成检测精度低、应用于嵌入式设备中实时性不高等情况。针对该问题,提出一种小目标行人检测算法YOLOv4-DBF。引用深度可分离卷积代替YOLOv4算法中的传统卷积,以降低模型的参数量和计算量,提升检测速度和算法实时性。在YOLOv4骨干网络中的特征融合部分引入scSE注意力模块,对输入行人特征图的重要通道和空间特征进行增强,促使网络学习更有意义的特征信息。对YOLOv4颈部中特征金字塔网络的特征融合部分进行改进,在增加少量计算量的情况下增强对图像中行人目标的多尺度特征学习,从而提高检测精度。在VOC07+12+COCO数据集上进行训练和验证,结果表明,相比原YOLOv4算法,YOLOv4-DBF算法的AP值提高4.16个百分点,速度提升27%,将该算法加速部署在无人车中的TX2设备上进行实时测试,其检测速度达到23FPS,能够有效提高小目标行人检测的精度及实时性。  相似文献   

17.
针对当前目标检测任务中对小目标检测识别率低,漏检率高的问题,提出一种基于门控通道注意力机制(EGCA)和自适应上采样模块的改进YOLOv3算法。该算法采用DarkNet-53作为主干网络进行图片基础特征提取;引入自适应上采样模块对低分辨率卷积特征图进行扩张,有效增强了不同尺度卷积特征图的融合效果;在三个尺度通道输出预测结果之前分别加入EGCA注意力机制以提高网络对小目标的特征表达和检测能力。将改进的算法在公开数据集RSOD(remote sensing object detection)上进行实验,小目标检测精度提升了8.2个百分点,最为显著,平均精度AP值达到56.3%,较原算法提升了7.9个百分点。实验结果表明,改进的算法相比于传统YOLOv3算法和其他算法拥有更好的小目标检测能力。  相似文献   

18.
针对炼焦厂烟火排放全天候环保监测的要求,提出了基于改进YOLOv5s的焦炉烟火识别算法;该算法以YOLOv5s为基础网络,在主干网络Backbone中添加CBAM注意力机制模块,使网络更加关注重要的特征,提升目标检测的准确率;新增FReLU激活函数代替SiLU激活函数,提高激活空间的灵敏度,改善烟火图像视觉任务;在自建数据集中烟、火样本标签基础上,增加灯光标签来解决强灯光对火焰识别的干扰,并通过分流训练、检测的方式来解决昼夜场景的烟火检测问题;在自建数据集上做对比实验,更换激活函数后,联合CBAM模块的YOLOv5s模型效果最佳;实验结果显示,与原始YOLOv5s模型相比,在白天场景下的烟火识别mAP值提升了6.7%,在夜间场景下的烟火识别mAP值高达97.4%。  相似文献   

19.
针对多尺度目标检测准确率偏低的问题,提出了一种基于YOLOv5s改进的多尺度目标检测算法。在YOLOv5s主干网络与Neck网络之间融合CBAM模块,增强模型对多尺度目标重要特征信息的提取能力;同时,在模型的Head部分增加多尺度目标检测结构,提高不同尺度目标检测精度;训练时采用CIoU替代GIoU损失函数,以提高模型收敛能力,实现高精度目标定位。数据集来源于实际场景中采集并增强的4万余张图像。实验结果表明,改进后的模型对行人、车辆和人脸的多尺度目标检测平均精度达92.1%,相比未改进YOLOv5s算法提升了3.4%。模型的收敛性好,对密集场景的目标,小尺度目标检测准确度更加突出。  相似文献   

20.
针对目前复杂交通监控场景下车辆检测精度不足、检测速度慢的问题,提出一种基于YOLOv8模型的轻量级车辆检测算法。采用FasterNet替换YOLOv8的骨干特征提取网络,减少了冗余计算和内存访问,提高了模型的检测精度和推理速度;在Backbone和Neck部分添加SimAM注意力模块,在不增加原始网络参数的同时增强了目标车辆的重要特征,提高了模型的特征融合能力;针对密集车流下小尺寸车辆检测效果不佳的问题,添加小目标检测头,更好地捕获小尺寸车辆的特征和上下文信息;使用可自适应调整权重系数的Wise-IoU作为改进模型的损失函数,提升了边界框的回归性能和检测的鲁棒性。在UA-DETRAC数据集的实验结果表明,相较于原模型,改进方法在交通监控系统中能够达到较好的检测精度和速度,mAP和FPS分别提高了3.06个百分点和3.36%,有效改善了复杂交通场景下小目标车辆检测效果不佳的问题,并在精度和速度之间取得了很好的平衡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号