首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用简单的水热合成路线制备高产量单分散球状ZnxCd1-xS,通过X射线衍射、扫描电镜以及紫外-可见漫反射对所得的产物进行表征。结果表明,所得产物呈现六方相纤锌矿结构,并且ZnxCd1-xS产物呈现出很好的均匀性与规则性。采用光催化降解罗丹明B反应来评价ZnxCd1-xS的光催化活性。其中,Zn0.4Cd0.6S具有最高的催化活性,并且在降解反应过程中表现出很高的稳定性。  相似文献   

2.
Zn(1−x)CdxS and Zn(1−x)CdxS:Mn2+ semiconductor quantum dots (2-4 nm) have been prepared by a novel solvothermal route assisted microwave heating method. The growth parameters governing the smaller size and higher yield have been optimized. The synthesized QDs exhibit a significant blue shift as compared to their corresponding bulk counterpart in the UV-vis optical absorption spectrum. The dielectric constant value varies from 2.79 to 6.17 (at 40 °C, 1 kHz) depending upon the composition of the alloy; lower value corresponds to Zn0.75Cd0.25S:Mn2+ and the higher value corresponds to Zn0.25Cd0.75S:Mn2+. The crystallite size to exciton bohr radius ratio being <1 indicates a strong quantum confinement effect in both CdS and ZnS QDs. The quantum confinement effect exists in the sequence of ZnS:Mn2+ < Zn(1−x)CdxS:Mn2+ (x < 0.5) < ZnS < Zn(1−x)CdxS < CdS < CdS:Mn2+.  相似文献   

3.
Herein, single-crystalline Zn1?xCoxO (0.0≤x≤0.10) nanorods were prepared using a facile microwave irradiation method. Structural analyses by X-ray diffraction and transmission electron microscopy revealed the incorporation of Co2+ in the lattice position of Zn2+ ions into the ZnO matrix. Field emission scanning electron microscopy and TEM micrographs revealed that the length and diameter of the undoped ZnO nanorods were about ~2 μm and ~200 nm, respectively. For Co-doped ZnO, the length and diameter were found to increase with an increase of Co doping. The selected area electron diffraction pattern indicated that the Zn1?xCoxO (0.0≤x≤0.10) nanorods had a single phase nature with the preferential growth direction along the [0 0 1] plane. Raman scattering spectra confirmed the shift of the E 2 high mode toward a lower wave number, suggested successful doping of Co ions at Zn site into the ZnO. Magnetic studies showed that Co doped ZnO nanorods exhibited room temperature ferromagnetism and the magnetization value increased with an increase in Co doping. The synthesis method presented here is a simple approach to prepare ZnO based diluted magnetic semiconductors nanostructures for practical application to spintronic devices.  相似文献   

4.
Zinc doped nickel ferrite i.e., Ni1−xZnxFe2O4 (0 ≤ x ≤ 0.6) have been prepared by using sol-gel method. X-ray diffraction of these samples shows the presence of single-phase cubic spinel structure. The room temperature magnetic measurements showed that saturation magnetization (Ms) increases with the substitution of Zn2+ ions up to x = 0.4 and thereafter it begins to decrease, whereas magnetostriction (λ) value decreases with the addition of Zn2+ in the Ni-Zn ferrite. Dielectric permittivity (?′), dielectric loss tangent (tan δ) and AC conductivity (σAC) for all the prepared samples have been studied as a function of frequency and composition in the range from 0.05 Hz to 10 MHz at room temperature. It has been observed that initially ?′, tan δ and σAC decreases with the substitution of Zn2+ up to x = 0.4 and then increases with the further addition of Zn2+ ions. Variation in the slope parameter s with zinc contents indicates the presence of different type of conduction mechanism in different compositions. The dielectric loss curves exhibit relaxation peaks which shift with the addition of Zn contents. The results have been explained on the basis of space charge polarization according to Maxwell-Wagner's two-layer model and the hopping of charges between Fe2+ and Fe3+ as well as between Ni3+ and Ni2+ ions at the octahedral sites.  相似文献   

5.
Zn1−xNixO (x = 0, 0.05, and 0.1) nanorod arrays were prepared by hydrothermal method. Morphology and structure analysis indicate that the nanorods have single-crystalline wurtzite structure, and no metallic Ni or NiO phase exists. Room temperature ferromagnetism (RTFM) was observed in the Zn0.9Ni0.1O nanorods. In addtion, photoluminescence spectra of Zn1−xNixO (x = 0, 0.05, 0.1 and 0.2) samples exhibit near band edge UV emissions and orange-red emissions. And the orange-red emission is confirmed to have originated from the interstitial oxygen defects.  相似文献   

6.
Nanocrystalline ferrite materials having the general formula Ni0.7Zn0.3Fe2−xAlxO4 (0.0 ≤ x ≤ 0.5) have been synthesized by citrate-gel auto combustion method and characterized using X-ray diffraction (XRD), energy dispersive X-ray (EDX), field emission scanning electron microscopy (FE-SEM), dc magnetization, dielectric and impedance spectroscopy measurements. XRD studies confirm that all the samples show single phase cubic spinel structure. The crystallite size of Ni0.7Zn0.3Fe2−xAlxO4 (0.0 ≤ x ≤ 0.5) nanoparticles calculated using the Debye-Scherrer formula was found in the range of 13-17 nm. The value of lattice parameter ‘a’ is found to decrease with increasing Al3+ content. EDX patterns confirm the compositional formation of the synthesized samples. FE-SEM micrographs show that all the samples have nano-crystalline behavior and particles show spherical shape. The variation of dielectric properties ?′,?″, and tan δ with frequency shows the dispersion behavior which is explained in the light of Maxwell-Wagner type of interfacial polarization in accordance with the Koop's phenomenological theory. The dc magnetization studies infer that magnetic moment of Ni0.7Zn0.3Fe2−xAlxO4 (0.0 ≤ x ≤ 0.5) nanoparticles was found to decrease with Al doping. Impedance spectroscopy techniques have been used to investigate the effect of grain and grain boundary on the electrical properties of the synthesized compounds.  相似文献   

7.
A set of Zn0.97−xCuxCr0.03O (0 ≤ x ≤ 0.03) samples has been synthesized by the sol-gel method. The structural, optical and magnetic properties of the samples were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and vibrating sample magnetometer (VSM). With Cu doping concentration increasing up to 2 at%, the XRD results showed that all diffraction peaks corresponded to wurtzite structure of ZnO, but for Zn0.94Cu0.03Cr0.03O, the secondary phase of Cu emerged. PL measurements showed that Zn0.97−xCuxCr0.03O powders and pure ZnO with the Cu concentration varied from 0.00 to 0.02 exhibited obvious blue shift; the green emission peak could be effectively enhanced with the increase of the Cu concentration. Magnetic measurements indicated that room-temperature ferromagnetism of Zn0.97−xCuxCr0.03O was an intrinsic property when Cu concentration was less than 0.02. The saturation magnetization of Zn0.97−xCuxCr0.03O (x = 0, 0.01, 0.02) increased with the increase of the Cu concentration.  相似文献   

8.
Eu3+-activated Li2Zn2(MoO4)3 multiwavelength excited red-emitting phosphors were synthesized via a solid state reaction. The structure and photoluminescence characteristics were investigated by X-ray powder diffraction and fluorescent spectrophotometry, respectively. The excitation spectrum included a strong broadband ranging from 250 to 350 nm and some sharp peaks at 363, 384, 395, 465, and 533 nm, which matchs the radiations of near-UV or blue light-emitting diodes chip well. Upon excitation either of near-UV or blue even green light, the intense red emission with 615 nm peak can be observed, which is ascribed to the 5D0-7F2 transition of Eu3+ ions. The chromaticity coordinates (x = 0.65, y = 0.34) of the as-obtained phosphor is very close to the National Television Standard Committee standard values (x = 0.67, y = 0.33). All these characteristics suggest that Eu3+-doped Li2Zn2(MoO4)3 wavelength-conversion material to be suitable candidate red component for phosphor-converted white light-emitting diodes.  相似文献   

9.
A series of ferrite samples with the chemical formula Ni0.7Zn0.3CrxFe2−xO4 (x = 0.0-0.5) were prepared by a sol-gel auto-combustion method and annealed at 600 °C for 4 h. The resultant powders were investigated by various techniques, including X-ray diffractometry (XRD), vibrating sample magnetometry (VSM), and permeability studies. The prepared samples have a cubic spinel structure with no impurity phase. As the Cr3+ content x increases, bulk density and crystallite size decrease, whereas porosity increases. The saturation magnetization decreases linearly from 58.31 to 42.90 emu/g with increasing Cr3+ content. However, coercivity increases with increasing Cr3+ substitution. The magnetic moments calculated from Neel's molecular-field model are in agreement in the experiment results. The initial permeability (μi) decreases with increasing Cr3+ substitution. The decrease in initial permeability (μi) is attributed to decrease in magnetization on addition of Cr3+. The real part of the permeability decreases gradually with increasing frequency in accordance with Snoek's law. The Curie temperature decreases linearly with increasing Cr3+ content.  相似文献   

10.
A new series of photocatalysts, Bi2Zn2/3−xCuxTa4/3O7 (Cu-β-BZT) crystals with pyrochlore structure were synthesized by the method of solid-state reaction (SSR). With small amount of Cu doped (0.01 ≤ x ≤ 0.04), the phase structure was kept to be monoclinic pyrochlore as pure β-BZT. The diffuse reflectance spectrum of Cu-β-BZT samples showed a red shift. The method of Cu doping enhanced the photocatalytic activity, and when the value of x is 0.03, the sample showed the highest activity, which is about 10 times higher than that of pure β-BZT under UV light. Especially, the samples of Cu-β-BZT showed photocatalytic activities under visible light irradiation (λ > 400 nm). Effects of the Cu doped on the photocatalytic activities of the catalysts were also discussed.  相似文献   

11.
Ni0.5Zn0.5Fe2−xCrxO4 (0≤x≤0.5) ferrites were successfully prepared by conventional solid state reaction method to investigate the effect of chromium substitution on the structural, electrical and magnetic properties. X-ray powder diffraction results demonstrate that all the prepared samples are well crystallized single-phase spinel structures without secondary phase. As chromium concentration increases, the lattice parameter and crystallite size gradually decrease. The magnetic measurement indicates that saturation magnetization is substantially suppressed by Cr3+ doping, changing from 73.5 A·m2/kg at x=0 to 46.3 A·m2/kg at x=0.5. While the room-temperature electrical resistivity is more than four orders of magnitude enhanced by Cr3+ substitution, reaching up to 1.1×108 Ω·cm at x=0.5. The dielectric constant monotonously decreases with rising frequency for these ferrites, showing a normal dielectric dispersion behavior. The compositional dependence of dielectric constant is inverse with that of electrical resistivity, which originates from the reduced Fe2+/Fe3+ electric dipole number by doping, indicating inherent correlation between polarization and conduction mechanism in ferrite.  相似文献   

12.
The phase evolution, crystal structure and dielectric properties of (1 − x)Nd(Zn0.5Ti0.5)O3 + xBi(Zn0.5Ti0.5)O3 compound ceramics (0 ≤ x ≤ 1.0, abbreviated as (1 − x)NZT-xBZT hereafter) were investigated. A pure perovskite phase was formed in the composition range of 0 ≤ x ≤ 0.05. The B-site Zn2+/Ti4+ 1:1 long range ordering (LRO) structure was detected by both XRD and Raman spectra in x ≤ 0.05 samples. However, this LRO structure became gradually degraded with an increase in x. The dielectric behaviors of the compound ceramic at various frequencies were investigated and correlated to its chemical composition and crystal structure. A gradually compensated τf value was obtained in (1 − x)NZT-xBZT microwave dielectrics at x = 0.03, which was mainly due to the dilution of dielectric constant in terms of Claussius-Mossotti differential equation.  相似文献   

13.
The partial and integral enthalpies of mixing of liquid ternary Ni-Sn-Zn alloys were determined. The system was investigated along two sections x Ni/x Sn ≈ 1:9, x Ni/x Sn ≈ 1:6 at 1073 K and along two sections x Sn/x Zn ≈ 9:1, x Sn/x Zn ≈ 4:1 at 873 K. The integral enthalpy of mixing at each temperature is described using the Redlich-Kister-Muggianu model for substitutional ternary solutions. In addition, the experimental results were compared with data calculated according to the Toop extrapolation model. The minimum integral enthalpy of approx. ?20000 J mol-1 corresponds to the minimum in the constituent binary Ni-Sn system, the maximum of approx. 3000 J mol-1 is equal to the maximum in the binary Sn-Zn system.  相似文献   

14.
From the UV–Vis absorption spectra, the FT-IR absorption spectra and the Raman spectra, it is deduced that Co ions primarily occupy the tetrahedral (A) site, with a minor number of them entering into the octahedral (B) site in the Ni1-xCoxCr2O4 compounds. The origin of the position disorder of the Co ions is consistent with the similar ionic radii of the Co ion (0.65 Å) and the Cr ion (0.62 Å) at B site. The FT-IR peak at about 510 cm?1 shifts towards high frequency side with the increasing cobalt content. It is resulted from the reduction of the cation–oxygen distance in the octahedron by the replacement of the Ni2+ with the Co2+ ions. The magnetic measurement shows that Curie temperatures (TC) are 75 and 90 K for the compounds with x=0.2 and 0.8, respectively.  相似文献   

15.
Nanocrystalline ferrites of compositions Ni0.5+1.5xCu0.3Zn0.2Fe2−xO4 (0 ≤ x ≤ 0.5) have been synthesized by using oxalate based precursor method at very low temperature. The Ni-Cu-Zn ferrite powder particles were obtained at 450 °C and they exhibit a crystallite size of 16-24 nm. The lattice constants were found nearly equal in all these samples due to minute difference in the ionic radius between Ni2+ and Fe3+ ions. The thermal analysis has showed the ferrite phase formation at very low temperature 377 °C. The two main spectroscopic bands corresponding to lattice vibrations were observed in the wavelength range from 300 to 1000 cm−1. The IR bands at 570 cm−1 (v1) and 390 cm−1 (v2) were assigned to tetrahedral (A) and octahedral [B] groups. The spectroscopic bands shift with the increase of doping concentration. The magnetization was found to decrease with increasing doping concentration. The dielectric constant (?′) and dielectric loss tangent (tan δ) decreased with increase of frequency. The dielectric constant and dielectric loss obtained for the nanocrystalline ferrite samples appeared to be lower than that of the ferrites prepared by other synthesis techniques.  相似文献   

16.
    用静态失重法研究了在标准配制水中Ni2+和Co2+复配(MoO2-4+Zn2+)对A20碳钢的缓蚀行为.结果表明,Langelier饱和指数(LSI)、MoO2-4浓度、Ni2+和Co2+浓度对缓蚀率的影响程度依次为:LSI>MoO2-4≈Co2+>LSI与MoO2-4的交互作用;Ni2+对提高缓蚀率几乎无贡献.  相似文献   

17.
A series of Gd1−xCaxPO4·nH2O nanorods were prepared using a simple hydrothermal reaction which was optimized by tuning the pH values of the precursor. The resulted nanorods were characterized by X-ray diffraction, transmission electron microscopy, Fourier transformation infrared spectroscopy, and alternative current impedance technique. It is demonstrated that all Gd1−xCaxPO4·nH2O nanorods crystallized in a pure hexagonal structure. For x = 0, the particle dimension decreased with increasing the pH value. For x > 0, the solid solution limit of Ca2+ in GdPO4·nH2O nanorods was about 3 mol%, below which the lattice volume increased with increasing the doping level of Ca2+. The conductivities of nanorods were highly dependent on both the particle size and Ca2+ concentration, as indicated by the increased conductivity as particle size reduces or Ca2+ doping level increases. These observations were understood in terms of the dehydration and the introduction of HPO42− defects by Ca2+ doping.  相似文献   

18.
A novel magnetic nanocomposite of multiwalled carbon nanotubes (MWCNTs) decorated with Co1−xZnxFe2O4 nanocrystals was synthesized successfully by an effective solvothermal method. The as-prepared MWCNTs/Co1−xZnxFe2O4 magnetic nanocomposite was used for the functionalization of P/H hydrogels as a prototype of device to show the potential application of the nanocomposites. The nanocomposites were characterized by X-ray diffraction analysis, transmission electron microscopy and vibrating sample magnetometer. The results show that the saturation magnetization of the MWCNTs/Co1−xZnxFe2O4 magnetic nanocomposites increases with x when the Zn2+ content is less than 0.5, but decreases rapidly when the Zn2+ content is more than 0.5. The saturation magnetization as a function of Zn2+ substitution reaches a maximum value of 57.5 emu g−1 for x = 0.5. The probable synthesis mechanism of these nanocomposites was described based on the experimental results.  相似文献   

19.
Amorphous Gd68−xNi32+x (x = −3, 0, 3) ribbons were prepared by melt-spinning method. The crystallization onset temperatures Tx1 for Gd68−xNi32+x amorphous ribbons with x = −3, 0, and 3 are 561, 568, and 562 K, respectively. All the samples undergo the second-order magnetic transition at temperatures between ∼122 (x = −3 and 3) and 124 K (x = 0). The Curie temperature TC does not change with the composition significantly. The maximum isothermal magnetic entropy changes (−ΔSM)max of Gd71Ni29, Gd68Ni32, and Gd65Ni35 amorphous ribbons for a magnetic field change of 0-5 T were 9.0, 8.0, and 6.9 J kg−1 K−1, respectively. Large values of the refrigerant capacity (RC) were obtained in these ribbons. For example, Gd71Ni29 amorphous ribbon has a maximum RC value of 724 J kg−1. Large magnetic entropy change and RC values together with high stability enable the Gd71Ni29 amorphous alloy a competitive candidate among the magnetic refrigeration materials working at temperatures near 120 K.  相似文献   

20.
To study the origin of ferromagnetism in Zn1?x Co x O thin films, its thermal diffusivity, in addition to its magnetization measurements, were analyzed. Thin films of Zn1?x Co x O (x = 0.03) were deposited on Si (100) substrates through ultrasonic spray pyrolysis. Magnetization M(B) measurements at low temperature showed a hysteresis loop that indicated the existence of ferromagnetic ordering in Zn0.97Co0.03O. However, the magnetic moment per Co ion was much lower than expected. A comparison of M(T) measured at zero-field-cooled and field-cooled conditions showed a superparamagnetic-like behavior, with a blocking temperature of about 130 K. Temperature dependence on the thermal diffusivity of Zn0.97Co0.03O showed a pronounced lambda-shaped minimum at 130 K, which indicated the existence of a second-order phase transition at this temperature. The weak ferromagnetism in the Zn0.97Co0.03O with the Curie temperature of 130 K was ascribed to the uncompensated magnetic moment at the surface of CoO nanoclusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号