首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用光学显微镜、场发射扫描电镜、X射线衍射及拉伸试验等研究了T6处理对铸态AZ91镁合金析出相β-Mg17Al12及断裂性能的影响.结果表明:分布在铸态AZ91镁合金晶界的粗大网状β-Mg17Al12相在T4热处理过程中几乎全部溶解,使合金的屈服强度下降,而抗拉强度和伸长率升高,断口形貌为具有一定塑性变形的解理特征;T6热处理后,合金组织中出现不连续析出与连续析出的β-Mg17Al12相,使合金的强度明显提高,而伸长率明显降低,其拉伸断裂方式以沿晶断裂为主.  相似文献   

2.
热处理对细晶AZ91D镁合金组织和性能的影响   总被引:2,自引:0,他引:2  
采用MEF-3金相显微镜、JSM-6700F扫描电镜、EMPA-1600电子探针以及WDW-100D型电子万能实验机等,对经Al-Ti-B细化处理的AZ91D镁合金铸态组织及固溶-时效态的显微组织和力学性能进行了观察和分析。结果表明:分布在铸态AZ91D镁合金晶界的网状β-Mg17Al12相在T4热处理过程中逐渐溶解,使得合金的硬度下降,而抗拉强度升高;T6热处理后,合金组织中出现不连续析出与连续析出的β-Mg17Al12相,使得抗拉强度和硬度明显提高;不同的热处理使合金的断口发生明显变化。  相似文献   

3.
固溶及时效处理对AZ80镁合金显微组织的影响   总被引:5,自引:1,他引:5  
采用场发射扫描电镜(FESEM)、能谱(EDS)及X射线衍射(XRD)对AZ80镁合金铸态及经固溶、时效处理后的显微组织、主要元素分布进行了观察和分析.结果表明,固溶处理后,AZ80镁合金晶界及枝晶间的粗大网状β-Mg17Al12相几乎全部消除,只剩少量、不连续状的β-Mg17Al12相残留在晶界,α-Mg基体中出现少量细小颗粒状β-Mg17Al12相,α-Mg基体中的Al含量显著增加;时效处理后,AZ80合金组织中出现不连续析出与连续析出的β-Mg17Al12相,不连续析出β相呈细小片层状弥散分布于晶界,连续析出β相呈细小颗粒状及菱形片状弥散分布于晶内,组织中Mg、Al元素的分布较均匀.  相似文献   

4.
热处理对AZ61A镁合金显微组织及力学性能的影响   总被引:3,自引:1,他引:2  
采用光学显微镜(OM)、场发射扫描电镜(FESEM)、X射线衍射(XRD)及拉伸试验等研究了热处理对铸态AZ61A镁合金显微组织及力学性能的影响.结果表明,分布在铸态AZ61A镁合金晶界的粗大网状β-Mg17Al12相在T4热处理过程中几乎全部溶解,使合金的硬度和屈服强度下降,而抗拉强度和伸长率升高;T6热处理后,合金组织中出现不连续析出与连续析出的β-Mg17Al12相,使得合金的抗拉强度、屈服强度略有提高,硬度有明显提高,而伸长率明显降低;不同的热处理使合金的断口形貌发生明显变化.  相似文献   

5.
T4和T6热处理参数对AZ91+x%La镁合金组织和性能的影响   总被引:1,自引:0,他引:1  
在不同的T4和T6热处理参数下,对AZ91+x%La镁合金在的组织和硬度的变化进行了研究.结果表明,T4(410℃+16 h)固溶处理后,由于合金的大部分β相都溶入基体中,硬度比铸态时有所下降;T6( 170℃+24 h)时效处理后,基体上析出了大量晶界分布或在α相晶粒内的层片状β-Mg17Al12相,合金硬度得到显著提高,且AZ91 +0.16% La镁合金时效态试样的硬度最高,可达138 HV.  相似文献   

6.
采用金相、X射线衍射、扫描电镜(SEM)、拉伸试验等方法分析和测试了挤压铸造纳米Si C颗粒增强AZ91D镁基复合材料在铸态(F)、固溶态(T4)和人工时效态(T6)下的组织和力学性能。结果表明,固溶处理可使n-Si Cp/AZ91D铸态组织中的β-Mg17Al12共晶相溶入到基体中,形成单一的过饱和α-Mg固溶体,合金抗拉强度和伸长率均有大幅提高,分别达到265 MPa和13.7%;经时效处理后,复合材料的抗拉强度和屈服强度进一步提高,分别为275,145 MPa;SEM结果显示,β-Mg17Al12相主要以连续析出/非连续析出方式分别在晶内及晶界上析出,特别是纳米Si C颗粒分布对二次析出相β-Mg17Al12的形貌、尺寸、分布有一定的影响,使二次析出相变得细小和弥散分布,从而充分发挥了二次析出相的沉淀强化作用;最后对n-Si Cp/AZ91D复合材料不同热处理条件下的断口形貌进行了SEM观察,并且对其断裂方式进行了分析和讨论。  相似文献   

7.
利用光学显微镜、X射线衍射仪、扫描电镜,研究了稀土Nd对AZ80镁合金组织和力学性能的影响。AZ80镁合金铸态组织由基体α-Mg和晶界处析出的粗大连续网状β-Mg_(17)Al_(12)相组成。添加Nd后,使原本粗大连续的β-Mg_(17)Al_(12)相转变为细小和断续分布,同时,合金中产生了形态分别呈杆状的Al_(11)Nd_3相和块状的Al2Nd稀土相。随着Nd元素添加量的增加,AZ80镁合金的铸态力学性能呈先提高后下降的趋势。当加入0.9%的Nd时,合金的铸态抗拉强度和屈服强度均达到最高,分别为205MPa和135MPa,伸长率达到7.5%。时效过程中稀土元素Nd抑制了片状β-Mg_(17)Al_(12)相的不连续析出,延迟合金达到峰时效的时间。T6处理后,AZ80-0.6Nd合金的抗拉强度和屈服强度最高,分别为221MPa和164MPa,伸长率为4.1%。  相似文献   

8.
T4与T6热处理对AM60-0.3Nd镁合金组织和力学性能的影响   总被引:1,自引:1,他引:0  
通过对AM60-0.3Nd镁合金进行T4及T6热处理,研究了不同热处理工艺对合金组织和力学性能的影响。结果表明,AM60-0.3Nd镁合金经T4热处理后,晶粒尺寸由铸态时的90μm下降至20μm左右,铸态时沿晶界分布的网状β-Mg17 Al12相完全消失,Al-Nd中间化合物由点状、块状凝聚成球状,抗拉强度得到显著提高,达到262 MPa;经T6热处理后,晶粒尺寸由铸态时的90μm下降至30μm左右,β-Mg17Al12相重新析出而Al-Nd中间化合物的形态又转变为块状,硬度得到显著提高,达到75 HV。  相似文献   

9.
固溶温度对AZ80镁合金析出相β-Mg17Al12及性能的影响   总被引:1,自引:1,他引:1  
采用光学显微镜(OM)、X射线衍射(XRD)、扫描电镜(SEM)及拉伸试验等研究了铸态AZ80镁合金经不同固溶温度保温处理后析出相β-Mg17Al12及性能变化.研究表明,随固溶温度的升高,AZ80镁合金晶界及枝晶间的粗大网状β-Mg17Al12相由于溶解而逐步减少,有呈不连续、细小颗粒状均匀分布在α-Mg基体内的一次析出相β-Mg17Al12出现;由于析出相β-Mg17Al12的数量减少、细小颗粒化,降低了析出相强化的作用,使材料的整体硬度HB明显下降,抗拉强度和伸长率显著提高,屈服强度只有少量下降.  相似文献   

10.
Mg-Al-Zn-Sm耐热镁合金的组织与力学性能   总被引:1,自引:0,他引:1  
利用光学显微镜、扫描电镜和X射线衍射仪分析了铸态和固溶态AZ61和AZ61-2Sm合金组织形貌和相组成,测试了其硬度和拉伸力学性能。结果表明,向AZ61合金中添加2%Sm后,铸态组织有所细化,β-Mg17Al12相数量减少和尺寸变小,同时生成小块状的高热稳定性相Al2Sm。经固溶处理后,β-Mg17Al12相完全固溶于α-Mg基体中,只存在Al2Sm相。铸态和固溶态室温拉伸力学性能与AZ61合金相当,而铸态高温拉伸力学性能却显著提高,经固溶后得到进一步提高,与铸态室温相当。  相似文献   

11.
Nd添加对AZ80镁合金显微组织及力学性能的影响(英文)   总被引:3,自引:0,他引:3  
研究添加稀土元素Nd对AZ80镁合金显微组织及力学性能的影响。结果表明:添加1.0%Nd元素可以有效地改善AZ80合金的铸态组织,其晶粒尺寸由448μm细化至125μm,凝固组织中出现条状的Al11Nd3相和块状的Al2Nd相,且β-Mg17Al12相显著细化,由连续网状变为不连续分布。时效过程中Nd元素的添加抑制了晶界处不连续析出相的出现,并推迟合金时效峰值的出现。在AZ80合金中添加1.0%Nd时,合金的综合力学性能最佳,屈服强度、抗拉强度和伸长率分别为103.7MPa、224.0MPa和8.4%。该合金T6态的屈服强度和抗拉强度分别达到141.1和231.1MPa。  相似文献   

12.
谢丽初  姜勇  蒋琼  陈鼎 《金属热处理》2012,37(11):71-75
采用硬度检测、拉伸试验、TEM、SEM观察等方法对于两种经过冷热循环处理后的铸态镁合金AZ91和ZK60在力学性能及微观组织的变化进行了研究。研究结果表明:冷热循环处理比单独热处理或深冷处理能更有效提高合金力学性能,对于AZ91镁合金深冷处理24 h+T6效果最明显,对ZK60合金,深冷处理16 h+T6的循环处理则是最佳工艺。冷热循环处理后改变了AZ91合金中β-Mg17Al12相的数量和形貌,而在ZK60合金组织中则发现了细小的杆状相和碟状相析出。  相似文献   

13.
采用OM、XRD、SEM、EDS和电子拉伸试验机研究了Sr对AZ81镁合金β-Mg17Al12析出相形态及力学性能的影响.结果表明,加入0.3%的Sr时,合金中β-Mg17Al12相得到了明显细化,合金中出现颗粒状及杆状Al4Sr新相.随着Sr含量增加,β-Mg17Al12相从连续网状变为不连续网状和块状,且合金常温力学性能在Sr含量为0.6%时达到最高.当Sr含量到0.9%时,β-Mg17Al12相数量进一步减少,Al4Sr相偏聚呈断续网状.AZ81-xSr镁合金经过T6处理后,在α-Mg相晶界及晶内析出了大量层片状或针状、点状β-Mg17Al12相,合金力学性能得到显著提高.随着Sr含量增加,晶界上不连续析出的β-Mg17Al12相层片间距减小,晶内连续析出的β-Mg17A112相减少.  相似文献   

14.
在不同的T4和T6热处理条件下,对Mg-7Al-1Si-1Gd合金的组织和硬度进行了研究。结果表明,T4(400℃×12h)固溶处理后β-Mg17Al12相几乎全部溶入α-Mg基体中,但Al2Gd相和汉字状Mg2Si相形貌几乎没有发生变化,因而合金的硬度变化很小。经400℃×12h+200℃×10h的T6处理后,β-Mg17Al12相沿晶界沉淀析出,呈层片状不连续分布,Mg2Si相由粗大汉字状变为细小的块状或棒状,合金硬度达到峰值,较铸态提高了12.45%。  相似文献   

15.
采用场发射扫描电镜(FESEM)、光镜(OM)、X射线衍射(XRD)、布氏硬度及拉伸实验等方法研究了球化处理对AZ80析出相β-Mg17Al12及力学性能的影响。结果表明:铸态AZ80合金经过415℃保温24 h随炉缓冷的退火处理后,晶间粗大的网状共晶β相消失,得到细小层片状脱溶β相均匀分布于α-Mg基体的平衡组织,且片层状间距致密。球化处理中,层片状β相以自身溶断方式实现球化;经300℃球化处理后镁基体上弥散分布大量细小颗粒状β相,继续升温,颗粒状β相发生二次固溶,数量减少。球化处理后合金的屈服强度、抗拉强度最大达135.4 MPa和258.7 MPa,较铸态合金分别提高了19.1%和59.6%,伸长率由铸态的4.96%上升至9.88%。布氏硬度HB随球化温度的升高呈现先增高后降低的变化规律,且均高于铸态合金。  相似文献   

16.
研究了挤压铸造AZ91D镁合金在不同热处理状态下的显微组织、力学性能以及厚度对镁合金试样力学性能的影响。结果表明,挤压铸造AZ91D镁合金铸态显微组织主要由基体α-Mg和在晶内及晶界上分布的β-Mg17Al12相组成,经固溶处理后得到单相α-Mg固溶体组织,而且在α-Mg晶粒内部也出现了少量颗粒状析出物,经固溶时效处理后β-Mg17Al12相再一次在α-Mg晶内和晶界析出,且晶粒变得更加细小;挤压铸造AZ91D镁合金的硬度、屈服强度、抗拉强度随着试样厚度的增加而减小,而伸长率随着试样厚度的增加而增加。  相似文献   

17.
挤压态AZ80镁合金分别在380、410、440℃固溶处理2h,固溶后的部分镁合金分别进行单级时效及双级时效处理。研究了固溶温度、单级时效及双级时效处理对AZ80镁合金组织和硬度的影响。结果表明:随固溶温度的升高,β-Mg_(17)Al_(12)共晶组织逐渐分解溶入α-Mg基体中,合金硬度也随之升高,440℃时晶粒变粗大;单级时效处理后,β-Mg_(17)Al_(12)相以连续和非连续的形式从α-Mg基体中析出,导致硬度大幅提高;双级时效处理后,β-Mg_(17)Al_(12)相的析出数目更多,尤其是晶内β-Mg_(17)Al_(12)相的连续析出,最高硬度能达到88.32 HV。  相似文献   

18.
研究了AZ91D镁合金均匀化退火处理后等温冷却过程中β-Mg17Al12析出相的尺寸和分布均匀性,探讨等温温度和时间对β-Mg17Al12相析出行为和形态乃至合金力学性能的影响。结果表明:在420℃保温20 h后在150~300℃等温冷却2~6 h,β-Mg17Al12相以层片状形态在晶内均匀析出,随着等温冷却保温时间的延长,β-Mg17Al12相析出量增加,且其平均层片间距随等温温度升高而增大。力学性能测试结果表明:经420℃均匀化退火20 h后在250℃等温冷却保温6 h,硬度从铸态的57.7 HB增加到83.9 HB,屈服强度和抗拉强度分别提高了28%和37%,抗压强度提高了49.6%,伸长率由铸态的2%增加到6.52%。  相似文献   

19.
研究了热处理和稀土Ce共同作用对AZ91D镁合金组织和性能的影响。结果表明,AZ91D镁合金中加入稀土Ce后,生成了杆状化合物Al4Ce,且网状分布的β-Mg17Al12相变成弥散化分布。随稀土Ce含量的增加,AZ91D镁合金的力学性能和耐蚀性能提高。经T4和T6热处理,杆状化合物Al4Ce的形貌保持不变。T6处理后,加入了稀土Ce合金的力学性能和耐蚀性能比铸态AZ91D镁合金的力学性能和耐蚀性能显著提高。  相似文献   

20.
利用XRD、OM、SEM、EDS、TEM和拉伸性能测试,研究了不同热处理对Mg-5Gd-3Y-0.5Z合金组织和力学性能的影响。结果表明:Mg-5Gd-3Y-0.5Zr合金的铸态组织主要由基体相α-Mg、Mg5Gd和Mg24Y5相组成;经固溶处理后,铸态组织中粗大的析出相基本都溶入α-Mg基体;再经时效处理后,有纳米级别的颗粒状或片状相重新析出。室温条件下,Mg-5Gd-3Y-0.5Zr合金的抗拉强度在T6态达到最大值206.6 MPa。铸态和T6态合金的抗拉强度均随温度的升高,呈现出降低趋势,且下降速度较快;而T4态合金的强度在250℃以前基本保持不变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号