首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
栗晶  蒋贵丰  王汉封  易超  柳朝晖  郑楚光 《化工学报》2012,63(11):3407-3417
应用PIV两相同时测量方法,对壁面Reynolds数为430的水平槽道稀疏气固两相湍流边界层拟序结构变动特性进行了研究。选取质量载荷为10-4~10-3的110 μm聚乙烯颗粒作为离散相。结果表明,低载荷颗粒仍能显著改变湍流拟序结构,进而影响宏观湍流属性。颗粒重力沉降形成的粗糙壁面增强了壁面附近湍流猝发行为,导致黏性底层中的气相法向脉动速度和雷诺剪切应力显著增大。颗粒与壁面的碰撞加强了低速流体上抛、削弱了高速流体下扫,同时增强了轨道交叉效应,从而抑制了湍流拟序结构发展,显著减小了黏性底层以上区域的法向脉动速度和雷诺剪切应力。此外,颗粒惯性还减小了黏性底层厚度、增大了流向速度梯度,导致气相流向脉动速度峰值增大,且其对应位置也更加靠近壁面。  相似文献   

2.
现有的气泡 -液体两相流动的数值模拟中 ,或者不考虑湍流 ,或者仅仅考虑液体湍流 ,但是直接模拟和PIV测量结果都表明气泡由于尾迹的作用有强烈的湍流脉动 .本文首次推导和封闭了同时模拟气泡湍流脉动和液体湍流脉动的二阶矩输运方程两相湍流模型 ,并在此基础上建立了代数应力气泡 -液体两相湍流模型 .用代数应力模型模拟了二维矩形断面鼓泡床内气泡 -液体两相流动 .预报结果给出了气泡和液体两相速度场、两相Reynolds应力及湍动能分布和气泡体积分数分布 .模拟结果与PIV测量结果符合很好 ,表明了模型的合理性 .研究结果表明 ,原先静止的液体在气泡因浮力而产生的上升运动的作用下产生回流流动 ,而气泡则只有上升运动 .气泡速度始终大于液体速度 .在床内气泡湍流脉动确实始终很强烈 .液体则由于气泡的作用以及自身速度梯度产生的双重作用而发生湍流脉动 .气泡的脉动显著地大于液体的脉动 .两相湍流脉动都是各向异性的 ,而且气泡湍流脉动的各向异性比液体的更强烈  相似文献   

3.
王德耕  朱士亮 《化工学报》1998,49(2):225-228
引言壁面电极传感器是传递过程电化学测试法中最常用的结构形式,它被广泛用来测液固传质系数、近壁面处流体的速度梯度及剪应力;采用特殊的组合形式及结构形式还可用来测湍流相关系数及两相流流场性质.壁面电极传感器的计算式,是用二维传质微分方程导出的,没有考虑电极尺寸有限带来的边缘传质问题.近年来,在电分析化学领域,微电极传感器被广泛地研究与应用,从而使电极边缘传质问题的理论研究受到极大的关注.而在传递过程电化学测试方面,尚未见有在考虑电极边缘传质效应后的壁面电极理论计算式的报道.本文研究了壁面电极测试过程…  相似文献   

4.
对矩形通道内层流正弦波脉动压力下的速度场进行了数值模拟。数值模拟结果表明,流体速度分布与脉动压力的振幅和频率密切相关。随着脉动流振幅的增大,脉动流瞬态速度随之增大;当脉动频率较小时,脉动流瞬态速度分布呈现出准稳态的特征,但随着频率增大到1.5Hz时,脉动流速度分布出现明显的"速度环"效应,即在近壁面处出现较大的速度梯度。  相似文献   

5.
通过数值模拟研究了平板内层流三角波脉动压力下的速度场。数值模拟结果表明,流体速度分布与脉动压力的振幅和频率密切相关。随着脉动振幅的增大,脉动流瞬态速度随之增大;当脉动压力频率较小时,脉动流瞬态速度分布呈现出准稳态的特征,但随着频率增大到1.0Hz时,脉动流速度分布出现明显的"速度环"效应,即在近壁面处出现较大的速度梯度。  相似文献   

6.
将数值模拟技术与正交试验方法相结合,对橡胶注射模具冷流道浇注系统的温度场进行了数值分析及研究。数值计算采用隐式定常求解,用k-ε湍流模型封闭运动方程,近壁区的流动采用标准的壁面函数法,固体壁面用无滑移边界条件,压力—速度耦合用SIMPLE算法。试验设计采用三水平三因素的正交试验法,得出三个不同水平的导热油油路直径、导热油的入口温度以及入口速度温度场分布,经过统计计算获得最佳结果:导热油油路直径为10mm、导热油的入口温度为95℃、流动速率为3.5m/s。  相似文献   

7.
板式螺旋桨搅拌槽内的流场及其流动特性   总被引:1,自引:0,他引:1  
以板式螺旋桨叶轮为例,采用相位多普勒粒子分析仪测量了直径为300 mm的平底圆筒搅拌槽内的流场;分析了时均速度、脉动速度及湍流动能的分布,以及叶轮离底间隙变化和挡板对流场的影响。结果表明:随离底间隙增大,叶轮区脉动速度和湍流动能增大,时均速度和脉动速度最大值位置向槽中心方向移动;主循环区轴向速度最大值随离底间隙增大而减小;叶轮区湍流动能较高,随离底间隙增大,湍流动能最大值增大,位置靠近叶轮端部;挡板阻碍槽内切向流动,影响湍流动能的分布,挡板前流场反映了叶轮区的湍流动能分布。  相似文献   

8.
圆管内轴向旋转流切向速度湍流强度   总被引:1,自引:1,他引:0       下载免费PDF全文
蔡香丽  李培  杨智勇  黄蕾  魏耀东 《化工学报》2014,65(11):4278-4284
采用热线风速仪(hot wire anemometry,HWA)测量了ø300 mm×2000 mm圆管内轴向旋转流瞬时切向速度随时间的变化,重点分析了切向速度湍流强度的分布特点和旋转流摆动对切向速度湍流强度的影响.测量结果表明,瞬时切向速度由高频的湍流脉动速度和低频的波动速度叠加构成.由于受旋转流旋转中心偏离圆管几何中心造成的旋转流摆动的影响,在圆管中心区域瞬时切向速度随时间的波动速度变化较大,边壁区域瞬时切向速度随时间的波动速度变化较小.通过对瞬时切向速度数据进行概率密度分析可知,切向湍流强度不仅受气流脉动的影响,还受旋转流中心摆动的影响,是由自身气流脉动产生的湍流强度和旋转流摆动产生的湍流强度两部分叠加构成.旋转流摆动导致了中心区域的湍流强度远大于边壁面区域的湍流强度.  相似文献   

9.
螺旋桨搅拌槽中液体的流动结构   总被引:1,自引:0,他引:1  
在直径1600mm的平底柱形有机玻璃槽中,利用热膜风速仪测量了2个搅拌浆-槽体系中流体的时均速度,脉动速度的均方根值,湍流强度,纵向积分尺度,纵向微分尺度和能谱函数。研究了时均速度及湍流微结构在搅拌槽中的分布规律及搅抖转速的影响。  相似文献   

10.
为揭示SK型静态混合器内非稳态流动特性,利用激光多普勒粒子分析仪对直径为0.04m、长径比为1.25的SK型静态混合器的切割区瞬时流场进行测量。采用功率谱和最大Lyapunov指数识别混合器内瞬时速度时间序列的混沌特性,利用湍流高阶矩参数分析混沌运动的统计特征。实验结果表明:SK型静态混合器切割区速度波动时间序列具有混沌特性;功率谱函数随频率的增加呈幂函数衰减,瞬时速度脉动主要能量集中在31.25Hz以下;湍流高阶矩分布揭示了切割区内的速度脉动存在非线性拟序结构,混沌运动的概率密度函数偏离高斯分布。  相似文献   

11.
Measurement of turbulent fluctuations of vclocity gradient on the wall is important for thorough understanding of turbulence structure, mass transfer and heat transfer in the vicinity of the wall. This paper describes the principle of electrochemical technique as well as the measurement of two-dirnensional fluctuations of velocity gradient with a pair of semicircular electrodes. In a fully developed turbulent pipe flow with pipe diameter of 0.194 m and with a solution of iodine and potassium iodide as flow medium, the measured axial and transversal turbulent intensities of velocity gradient at the wall arc 0.3-0.33 and 0.11 0.12 respectively.  相似文献   

12.
The present paper suggests the use of thermophoretic phenomena to decrease the rate of particle deposition onto pipe walls from a turbulent flow. When a tube is externally heated; the particles will be subjected to thermal force within the laminar sublayer in a direction away from the surface preventing or reducing their deposition. A theory proposed by EI-Shobokshy and Ismail (1980) has been used for estimating the deposition velocity. The thermal velocity component was calculated and the effective velocity of particles approaching the wall surface computed. The results present the relationship between particle penetration and particle size at different values of pipe wall temperature and Re. The experimental results showed a good agreement with theoretical results for particle sizes 6 -10 μm diameter, Re = 6000 – 8000 and pipe wall temperatures 50 – 150°C.  相似文献   

13.
The relation between the velocity and concentration fields for a fully developed turbulent flow which transfers mass to a pipe wall at large Schmidt numbers has been studied. Measurements of the fluctuations of the concentration gradient and the velocity gradient were obtained simultaneously at multiple locations on the wall. Spatial scales were calculated for the low frequency velocity fluctuations by passing the measured signals through low-pass filters. These scales are the same size as the scales of the concentration fluctuations. This result provides additional support for the notion that mass transfer to a boundary at high Schmidt numbers in controlled by low frequency velocity fluctuations which contain only a small fraction of the total turbulent energy.  相似文献   

14.
Homogenous oil in water dispersion has been investigated in a horizontal pipe. The mean droplet size is 25 μm. Experiments were carried out in a 7.5‐m‐long transparent pipe of 50‐mm internal diameter. The wall friction has been measured and modeled for a wide range of flow parameters, mixture velocities ranging from 0.28 to 1.2 m/s, and dispersed phase volume fractions up to 0.6, including turbulent, intermediate, and laminar regimes. Flow regimes have been identified from velocity profiles measured by particle image velocimetry in a matched refractive index medium. It is shown that the concept of effective viscosity is relevant to scale the friction at the wall of the dispersed flow. Based on mixture properties, the friction factor follows the Hagen‐Poiseuille and the Blasius' law in laminar and turbulent regimes, respectively. Interestingly, the transition toward turbulence is delayed as the dispersed phase fraction is increased. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

15.
实验研究了水包油型乳化液油滴在管内节流元件处的破碎行为,分析了破碎机理. 结果表明,液滴破碎主要发生在节流元件内壁及下游附近,其概率是施于液滴上湍流应力与液滴表面能之比的递增函数,是流体韦伯数及节流元件两侧最大压差的递增函数;在湍流状态(Re>4000)下,液滴充分振荡且受到较大的水流惯性力和速度梯度剪切力,更易破碎;由苏丹红IV染色的正庚烷体系界面张力由非染色时的47 mN/m降到23.6 mN/m,黏性力对液滴破碎的影响程度下降,受流速、压差等影响的惯性力起决定性作用,液滴破碎程度更大;流速决定流体对分散相油滴的湍流剪切破碎力,流速增大则油滴粒径破裂程度加大,而流速取决于流量和节流比;注入染色正庚烷油相体积增大(0.5~5 mL),削弱了节流元件的液滴破碎作用,两相流体系倾向于形成更大直径的液滴,中位径一般为20~35 mm.  相似文献   

16.
采用低雷诺数k-ε模型对输气管道气体置换过程进行二维数值模拟。研究结果表明:混合区浓度在轴向呈非对称分布,呈"头短尾长"特征;流速、管径、管道长度是混合长度的主要影响因素。混合初始,混合长度增长速率大,随着主流向下游流动距离的增加,增长速率减小;流速是混合长度的重要控制参数,湍流时的混合长度小于层流,流速对混合长度的影响在高雷诺数湍流时比较小;同一湍流流速下,混合长度随管径增加而增加;管径对混合长度的影响随湍流度的降低而增大;氮气-天然气混合长度比氮气-空气混合长度大1%—2%。  相似文献   

17.
The turbulent flow field (Re=60024) in the wake of a cylindrical bluff body in a 0.105 m internal diameter pipe with an area blockage ratio of 82% in turbulent single-phase flow was studied using laser Doppler velocimetry (LDV). The results for the time-averaged velocity showed a toroidal vortex below the bluff body. The axial location below the bluff body where both the time-averaged radial and axial velocity components were zero (eye of the vortex) was found at approximately 0.72D. The end of the re-circulation region as defined by a stagnation point on the centreline of the pipe was found at an axial location below the bluff body of approximately 1.3D. These two locations did not change when altering the liquid superficial velocity confirming that the geometry (i.e., size) of the toroidal vortex is not dependent on the superficial liquid velocity or the speed of the vortex.Similar measurements using LDV were taken in the wake of a ventilated cavity in a vertical 0.105 m internal diameter pipe, with an area blockage ratio of 80%. The flow beneath the cavity was turbulent two-phase bubbly flow and the liquid-only flow ahead of the cavity was turbulent (Re=45618). The cavity was attached to a (central) sparger, which is a scale-up of the design used by Bacon (1995). The average gas void fraction in the wake of the cavity was 7%. The results for the time-averaged velocity confirmed the formation of a toroidal vortex remarkably similar to the vortex formed below the bluff body. The eye of the vortex and the end of the re-circulation region were found at an axial location below the ventilated cavity of 0.78 and 1.35D, respectively, i.e., almost identical to the results for the bluff body.The LDV results of the cylindrical bluff body and the ventilated cavity were compared with the fully predictive model of the velocity distribution in the vortex proposed by Thorpe et al. (2001) and good agreement was found in both cases. The model also agreed well with the data of van Hout et al. (2002) for a Taylor bubble rising in stagnant liquid in a 0.025 m internal diameter pipe. The CFX simulations of Thorpe et al. (2001) carried out for a 0.050 m internal diameter pipe, agreed well with the experimental data of the cylindrical bluff body, the ventilated cavity and the data obtained by van Hout et al. (2002) when correlating the results in the appropriate dimensionless form. Our analysis showed that the maximum axial re-circulation velocity in the centre of the vortex ring was directly proportional to the mean velocity in the annulus at the base of the cylindrical bluff body, the ventilated cavity or the Taylor bubble. The proportionality constant for all cases was found to be approximately 0.38 confirming the value proposed by Thorpe et al. (2001).  相似文献   

18.
熊长川  李卫星  刘业飞  邢卫红 《化工学报》2017,68(11):4341-4350
采用Euler模型与多孔介质模型对不同结构的柱式膜组件内的流体流动进行了计算模拟。研究了曝气孔数目(开孔率为1.92%保持不变)与膜组件高度对膜组件膜丝填充区域内的气液两相分布、壁面剪应力、湍流黏度以及液相速度场的影响。计算模拟数据与实验结果吻合良好。计算模拟表明:通过减小曝气孔直径,增加曝气孔数目的方式能够促进气液两相流场与液相速度场的均匀分布,以及壁面剪应力与湍流黏度的增强;增加膜组件的高度,有利于增加单支膜组件膜面积的同时充分利用曝气擦洗过程中气液两相流对膜丝壁面进行高效的气擦洗。综合考虑膜组件的安装运输、膜丝通量分布以及能耗等因素,对于直径250 mm的膜组件采用曝气孔的直径为6.32 mm,数目为30个,长度在2~2.5 m之间为最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号