首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
针对低渗透油藏注水开发采收率低的问题,进行了阴非复配表面活性剂的筛选与评价研究。通过对界面张力及乳化性能的测定,确定十二烷基苯基磺酸盐(SDBS)与脂肪醇聚氧乙烯醚(AEO-9)进行复配,具有良好的表面活性剂性能。通过阴非复配体系的特点、相渗曲线分析以及岩心驱替实验,发现SDBS/AEO-9阴非复配体系具有降低注入压力、提高最终采收率的能力,能够很好的应用于低渗透油藏。确定当表面活性剂浓度为0.5%时,该表面活性剂复配体系能够降低界面张力至10-3m N·m-1,可提高采收率5.41%。  相似文献   

2.
新型羟基磺基甜菜碱表面活性剂与相对分子质量为2 500万的聚丙烯酰胺进行复合,测定体系的界面张力、黏弹性及乳化性能。结果表明,新型羟基磺基甜菜碱表面活性剂在浓度2.16 mmol/L时,表面张力33.39 m N/m,且乳化性能较好,具有较好的表面活性剂性能。相比于单独的表面活性剂,二元复合体系使溶液的临界胶束浓度增大,且界面张力也升高。当表面活性剂浓度为1.3 g/L,聚合物浓度为0.5 g/L时,体系的界面张力达到最低。聚合物的加入能显著降低体系的粘弹性,且随着聚合物浓度的增加,出现黏度最大值的表面活性剂的浓度越低。当表面活性剂水溶液质量浓度1.3 g/L,聚合物浓度1.5 g/L时,体系乳化性能最佳,实验表明,在低渗透岩心中,可以提高采收率5.78%。  相似文献   

3.
新型羟基磺基甜菜碱表面活性剂与相对分子质量为2 500万的聚丙烯酰胺进行复合,测定体系的界面张力、黏弹性及乳化性能。结果表明,新型羟基磺基甜菜碱表面活性剂在浓度2.16 mmol/L时,表面张力33.39 m N/m,且乳化性能较好,具有较好的表面活性剂性能。相比于单独的表面活性剂,二元复合体系使溶液的临界胶束浓度增大,且界面张力也升高。当表面活性剂浓度为1.3 g/L,聚合物浓度为0.5 g/L时,体系的界面张力达到最低。聚合物的加入能显著降低体系的粘弹性,且随着聚合物浓度的增加,出现黏度最大值的表面活性剂的浓度越低。当表面活性剂水溶液质量浓度1.3 g/L,聚合物浓度1.5 g/L时,体系乳化性能最佳,实验表明,在低渗透岩心中,可以提高采收率5.78%。  相似文献   

4.
《应用化工》2016,(12):2383-2386
结合长庆油田低渗透非均质高矿化度的特点,对研发的表面活性剂驱油体系CQYH-1进行了基本性能评价,并考察了该体系的润湿反转能力和驱油能力。结果表明,0.1%~0.5%的CQYH-1与长庆某油田原油界面张力达到10~(-3)m N/m数量级,与该油田注入水、采出水配伍性良好。当矿化度为10~100 g/L时,0.5%的CQYH-1界面张力仍能保持10~(-3)m N/m数量级,抗盐性能较好,且具有一定的抗吸附能力。接触角测试实验表明,0.5%的CQYH-1可将岩心表面接触角由70.70°变为0°,改变了岩石表面的润湿性。驱油实验表明,0.5%的CQYH-1可在水驱的基础上,提高采收率9.9%~16.67%,满足长庆低渗透油田表面活性剂驱油要求。该表面活性剂驱油体系已在长庆某油田现场得到应用,取得了明显的效果。  相似文献   

5.
《应用化工》2022,(5):804-809
针对低渗透油藏注水突破快、无效水循环严重的问题,开展了粘弹性表面活性剂驱油体系的室内研究。通过界面性能和体相流变性能对粘弹性表面活性剂体系进行了评价和优化,得到了具有扩大波及体积和提高驱油效率功能,并具有良好注入性的粘弹性表面活性剂体系。该表面活性剂还具有良好的界面性能,浓度介于0.05%0.3%时,能够将油水界面张力降低到10-2m N/m数量级,并具有迅速剥离油膜的能力。在0.15%以上,体系的粘度随着浓度的升高而迅速升高,当浓度达到0.3%时,体系的粘度达到20.1 m Pa·s(50℃)。该体系能够通过直径0.2μm的核孔膜,而聚合物则因为堵塞核孔,不能通过0.2μm核孔膜。模拟驱油实验结果表明,该体系可以在水驱基础上提高采收率8%左右。以上研究结果表明,粘弹性表面活性剂体系在低渗透油藏低储层伤害开发中具有很大的潜力。  相似文献   

6.
《应用化工》2015,(5):804-809
针对低渗透油藏注水突破快、无效水循环严重的问题,开展了粘弹性表面活性剂驱油体系的室内研究。通过界面性能和体相流变性能对粘弹性表面活性剂体系进行了评价和优化,得到了具有扩大波及体积和提高驱油效率功能,并具有良好注入性的粘弹性表面活性剂体系。该表面活性剂还具有良好的界面性能,浓度介于0.05%~0.3%时,能够将油水界面张力降低到10-2m N/m数量级,并具有迅速剥离油膜的能力。在0.15%以上,体系的粘度随着浓度的升高而迅速升高,当浓度达到0.3%时,体系的粘度达到20.1 m Pa·s(50℃)。该体系能够通过直径0.2μm的核孔膜,而聚合物则因为堵塞核孔,不能通过0.2μm核孔膜。模拟驱油实验结果表明,该体系可以在水驱基础上提高采收率8%左右。以上研究结果表明,粘弹性表面活性剂体系在低渗透油藏低储层伤害开发中具有很大的潜力。  相似文献   

7.
针对传统低渗透油藏开采中,采用水驱采收率低和开发效果差的问题,提出一种无碱的阴离子-非离子表面活性剂体系。为验证该表面活性剂性能,对上海石油化工研究院合成的表面活性剂体系的界面张力进行实验。通过实验得到SHPC7体系性能最佳,能快速得到界面张力平衡状态。然后,配置不同浓度的SHPC7,并对其界面张力进行观察,从而得到其最佳的实验浓度。最后,通过模拟低渗透油藏环境,就SHPC7表面活性剂在乳化性能、驱油性能等进行评价,并将其与AOS表面活性剂比较。实验结果表明,在实验环境下SHPC7的乳化性能要优于AOS表面活性剂,同时随着SHPC7的加入,其采收率可提高15%。由此说明SHPC7体系在提高低渗透油藏开采方面具有很好的作用。  相似文献   

8.
为提高低渗透油藏采收率,研究了十六烷基磺基甜菜碱(SB-16)和十二烷基硫酸钠(SDS)按不同质量比复配所得表面活性剂体系的临界胶束浓度(cmc)和相应的表面张力(γ_(cmc)),得到该复配体系的最佳复配质量比为7∶3,此时cmc=0.025 g/L,γ_(cmc)=26.7 m N/m,进而以该复配体系为表面活性剂,研究不同质量分数、不同链长的醇类为助表面活性剂时对体系界面张力与乳化率的影响,最终确定质量分数为4%的复配体系+2%的异丁醇为最佳配方,在该条件下可以使油/水界面张力降至超低界面张力数量级(10~(-3)mN/m)。实验结果表明,在低渗透岩心中,复配微乳液驱油体系较水驱可以提高采收率10个百分点,效果较好。  相似文献   

9.
《应用化工》2022,(12):2383-2386
结合长庆油田低渗透非均质高矿化度的特点,对研发的表面活性剂驱油体系CQYH-1进行了基本性能评价,并考察了该体系的润湿反转能力和驱油能力。结果表明,0.1%0.5%的CQYH-1与长庆某油田原油界面张力达到100.5%的CQYH-1与长庆某油田原油界面张力达到10(-3)m N/m数量级,与该油田注入水、采出水配伍性良好。当矿化度为10(-3)m N/m数量级,与该油田注入水、采出水配伍性良好。当矿化度为10100 g/L时,0.5%的CQYH-1界面张力仍能保持10100 g/L时,0.5%的CQYH-1界面张力仍能保持10(-3)m N/m数量级,抗盐性能较好,且具有一定的抗吸附能力。接触角测试实验表明,0.5%的CQYH-1可将岩心表面接触角由70.70°变为0°,改变了岩石表面的润湿性。驱油实验表明,0.5%的CQYH-1可在水驱的基础上,提高采收率9.9%(-3)m N/m数量级,抗盐性能较好,且具有一定的抗吸附能力。接触角测试实验表明,0.5%的CQYH-1可将岩心表面接触角由70.70°变为0°,改变了岩石表面的润湿性。驱油实验表明,0.5%的CQYH-1可在水驱的基础上,提高采收率9.9%16.67%,满足长庆低渗透油田表面活性剂驱油要求。该表面活性剂驱油体系已在长庆某油田现场得到应用,取得了明显的效果。  相似文献   

10.
《应用化工》2022,(7):1556-1558
为提高低渗透油藏采收率,开发了一种阴非离子型Gemini表面活性剂ANG7-Ⅳ-7,并测定体系的界面张力、乳化性能和吸附量。结果表明,ANG7-Ⅳ-7表面活性剂浓度在14 g/L范围内,油水界面张力均可达到10-3m N/m的超低数量级,当ANG7-Ⅳ-7浓度为4 g/L时,能使油水界面张力达到最低值6.025×10-3m N/m;在注入浓度为4 g/L时,表面活性剂在油砂上的吸附量为2.035 mg/g。室内岩心驱油试验结果表明,4 g/L的ANG7-Ⅳ-7表面活性剂驱可在水驱后提高采收率11个百分点。  相似文献   

11.
低渗透油藏注水井经过长时间注水开发后容易出现注入压力升高以及注水量减少的现象。通过表面活性剂、防膨剂以及防垢剂的优选评价实验,研制了一套适合低渗透油藏注水井的表面活性剂降压增注体系,室内评价了其降低界面张力性能、润湿性能以及降压增注性能。结果表明:该体系与储层原油之间的界面张力随着时间的延长逐渐降低,20 min后即可稳定在10~(-2) mN·m~(-1)数量级,具有良好的降低界面张力性能;亲油岩心切片在该体系中浸泡10 h后的表面接触角可以减小到60°以下,具有良好的润湿性能;岩心水驱压力稳定后注入该体系可以有效降低后续水驱压力,注入0.5 PV后的降压率可以达到26.18%,具有良好的降压增注性能。该表面活性剂降压增注体系能够满足低渗透油藏注水井降压增注现场施工的要求。  相似文献   

12.
为提高低渗透油藏采收率,开发了一种阴非离子型Gemini表面活性剂ANG7-Ⅳ-7,并测定体系的界面张力、乳化性能和吸附量。结果表明,ANG7-Ⅳ-7表面活性剂浓度在1~4 g/L范围内,油水界面张力均可达到10-3m N/m的超低数量级,当ANG7-Ⅳ-7浓度为4 g/L时,能使油水界面张力达到最低值6.025×10-3m N/m;在注入浓度为4 g/L时,表面活性剂在油砂上的吸附量为2.035 mg/g。室内岩心驱油试验结果表明,4 g/L的ANG7-Ⅳ-7表面活性剂驱可在水驱后提高采收率11个百分点。  相似文献   

13.
为同时解决低渗透油藏面临注入困难和储层非均质性强的问题,基于表面活性剂的降压增注原理和乳化调驱机理,探讨了表面活性剂驱油体系在低渗透油藏的应用可行性。实验选取乳化能力不同,其余性能(降低油水界面张力能力、改变润湿性能力、吸附性能)相同的两种表面活性剂,通过室内洗油实验、岩心注入实验和驱油实验,评价了表面活性剂降压增注性能和低渗透条件下乳状液深部调驱性能,探讨了表面活性剂在低渗透油藏中的提高采收率机理。研究结果表明:乳化能力不同的两种表面活性剂具有相近的洗油能力;乳化能力强的表面活性剂在岩心中驱替原油的过程中会形成稳定的乳状液体系,这会降低表面活性剂的降压增注效果,但却可以起到深部调驱作用,可有效提升驱油剂的波及范围,提升低渗透油藏原油采收率。低渗透油藏表面活性剂驱油体系的筛选,需综合考虑提高采收率效果及降压增注性能,根据油藏实际情况选取性能不同的表面活性剂驱油体系。  相似文献   

14.
舒政  丁思家  韩利娟  王蓓  李碧超 《应用化工》2012,41(6):1032-1036
在83℃下测定了3种表面活性剂DL-S、HL-Y/NNR、GZ-16的油水界面张力、乳化能力以及改变油藏岩石润湿性的能力。利用低渗透岩心驱油实验研究表面活性剂的这3种特性对驱油效率的影响。结果表明,表面活性剂的浓度在1 000 mg/L时,DL-S的油水界面张力达到10-3mN/m超低数量级,HL-Y/NNR表现出较为优越的乳化性能,GZ-16具有较好的润湿性能。在驱油实验中,具有最好乳化性能的HL-Y/NNR提高采收率的幅度最大为12.91%,其次为具有超低界面张力的DL-S,相较而言,改变润湿性的能力对驱油效率的影响最小。  相似文献   

15.
以三乙醇胺为原料通过氯化反应、烷基化反应和磺化反应合成了一种星型表面活性剂,其具有3条疏水碳链和3个磺酸盐亲水基团。研究发现该表面活性剂具有很高的表面活性其临界胶束浓度CMC为4.93×10-5 mol/L,此时的界面张力为32.5 mN/m。同时,研究了星型表面活性剂浓度和NaOH浓度对原油/水界面张力的影响。研究发现,少量的星型表面活性剂就能有效的降低原油/水体系的界面张力。当表面活性剂浓度为0.1 g/L,NaOH浓度为0.5 g/L,温度为50 ℃时的原油/水体系的界面张力降至1.1×10-4 mN/m。该界面张力值已经属于超低界面张力,满足驱油用表面活性剂的基本条件。自乳化实验表明,该表面活性剂具有很好的乳化能力,表面活性剂浓度在0.1 g/L时就能将原油乳化成粒径为5 ~ 20 μm的O/W乳状液。  相似文献   

16.
针对目标油藏对复配的低界面张力泡沫体系DJM-2性能以及影响因素开展研究,确定了目标油藏用低界面张力泡沫体系DJM-2的最佳体系配方,并对所筛选的体系性能进行评价。实验结果表明:在目标油藏(矿化度6284mg/L、温度70℃)条件下,低界面张力泡沫体系DJM-2油水界面张力为1.58×10~(-3)mN/m,且在渗透率极差为5的油藏条件下,该体系的驱油效果可基于水驱提高采收率16.64%,同时该体系具有良好的稳定性和乳化性。  相似文献   

17.
姚峰  韩利娟 《应用化工》2013,(4):626-629
研究了表面活性剂对原油/水界面张力、乳化作用以及对岩石润湿性的影响,开展了表面活性剂和聚合物/表面活性剂二元体系提高低渗透油藏石油采收率的实验研究。结果表明,超低界面张力是影响石油采收率的重要因素,具有良好乳化性能的驱油体系能起到更好的驱油效果,聚合物/表面活性剂二元驱油体系具有更高的提高石油采收率的效能。  相似文献   

18.
以三乙醇胺为原料,通过氯化反应、烷基化反应和磺化反应合成了一种具有3条疏水碳链和3个磺酸盐亲水基团的星型表面活性剂。对其进行了临界胶束浓度(CMC)考察,结果表明:在25℃下,该表面活性剂的临界胶束浓度为4.93×10~(-5)mol/L,此时的表面张力为32.5 m N/m。同时,考察了星型表面活性剂和NaOH质量浓度对原油/水界面张力的影响。结果表明:当表面活性剂质量浓度为0.1 g/L、NaOH质量浓度为0.5 g/L、温度为50℃时,原油/水体系的界面张力由4.0×10~(-2)m N/m降至1.1×10~(-4)m N/m。自乳化实验表明:该表面活性剂质量浓度在0.1 g/L时就能将原油乳化成粒径为5~20μm的O/W乳状液。  相似文献   

19.
通过阴离子表面活性剂(ME-3)、非离子表面活性剂(SM-2)、两性表面活性剂(AO-3)制备驱油用耐高温表面活性剂GY-9。在不同矿化度、温度下,对GY-9体系进行了油水界面张力、乳化性能、吸附性能等测试,并用长庆城95岩心进行模拟驱替实验。结果表明:体系具有较宽的温度和矿化度适用范围。在质量浓度为4.0 g/L,50 000 mg/L矿化水,模拟原油比为6∶4时,油水界面张力达到2.754×10-3m N/m数量级;当质量浓度为5.0 g/L时,界面张力可达6.7×10-4m N/m数量级,远高于行业标准。GY-9溶液的稳定性、耐温性均良好;驱替实验表明,可有效提高采收率约11.3%,在三次采油中具有极大的应用价值。  相似文献   

20.
王烁  刘文博 《当代化工》2017,(11):2258-2261
高盐油藏在水驱采油之后仍有相当一部分原油滞留在地层中,很难将其采出,因此可选用化学方法动用,但高盐油藏地层水矿化度相对较高,温度相对较高,普通表面活性剂很难满足如此苛刻条件下的油藏环境。因此需要将表面活性剂进行复配,充分发挥各种活性剂的优势,进而达到提高采收率的目的。针对玉门油田鸭儿峡L油藏地层水矿化度的特点,采用阴离子-两性表面活性剂复配,通过测定不同复配比和活性剂浓度下的油水界面张力,最终确定了适用于L油藏的表面活性剂驱油复配体系。实验表明在石油磺酸盐A与C14BE复配比为1:4、1:3,总浓度为0.6%、0.1%时,油水界面张力达到了10-3 m N/m级别。此驱油配方适用于L油藏提高采收率的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号