首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过"前驱体导入-原位沉积"的工艺路线,将水合氧化铈(HCO)纳米颗粒负载入强碱阴离子交换树脂(SAE)孔道内,制得复合纳米吸附剂HCO@SAE并用于污水中磷酸盐的深度去除。试验结果表明:与其母体材料SAE、粉末活性炭(PAC)和大孔吸附树脂XAD-4相比,HCO@SAE具有最佳的磷酸盐吸附性能。溶液pH值对HCO@SAE吸附磷酸盐的性能有较大影响,且在中性条件下可获得最大的磷酸盐吸附量(30.96 mgP/g)。得益于负载HCO纳米颗粒对磷酸盐的专属内配位络合作用,HCO@SAE能够在共存高浓度竞争离子的条件下实现对磷酸盐的选择性吸附。采用NaOH-NaCl混合溶液作为脱附剂可实现对吸附饱和HCO@SAE的高效再生,再生后吸附性能保持稳定,从而实现多批次循环吸附操作。  相似文献   

2.
研究了改性钢渣吸附除磷影响因素、等温吸附线特征和吸附动力学,并对生物处理后的出水进行吸附除磷研究。结果表明:在初始磷浓度10mg/L,投加量10g/L、pH为7时,改性钢渣吸附后总磷浓度为0.687mg/L,去除率达93%;改性钢渣对磷的吸附符合Langmuir模型,理论饱和吸附量是1.977mg/g,吸附动力学符合准二级动力学模型(R20.99);实际生活污水的吸附除磷中,投加量为50g/L,反应2h后出水总磷浓度达到《城镇污水处理厂污染物排放标准》(GB18918—2002)一级B标的排放要求。  相似文献   

3.
Magnetite nanoparticles were used to treat arsenic‐contaminated water. Because of their large surface area, these particles have an affinity for heavy metals by adsorbing them from a liquid phase. The results of the study showed that the maximum arsenic adsorption occurred at pH 2, with a value of approximately 3.70 mg/g for both As(III) and As(V) when the initial concentration of both arsenic species was maintained at 2 mg/L. The study showed that, apart from pH, the removal of arsenic from contaminated water also depends on the contact time, the initial concentration of arsenic, the phosphate concentration in the water and the adsorbent concentration. The results suggest that arsenic adsorption involved the formation of weak arsenic–iron oxide complexes at the magnetite surface. At a fixed adsorbent (magnetite nanoparticles) concentration of 0.4 g/L, percent arsenic removal decreased with increasing phosphate concentration. Magnetite nanoparticles removed <50% of arsenic from water containing >6 mg/L phosphate. In this case, an optimum design for achieving high arsenic removal by magnetite nanoparticles may be required.  相似文献   

4.
Xiaohong Guan  Haoran Dong  Jun Ma  Li Jiang   《Water research》2009,43(15):3891-3899
Effects of sulfate, phosphate, silicate and humic acid (HA) on the removal of As(III) in the KMnO4–Fe(II) process were investigated in the pH range of 4–9 with permanganate and ferrous sulfate applied at selected dosage. Sulfate decreased the removal of arsenic by 6.5–36.0% at pH 6–9 and the decrease in adsorption did not increase with increasing concentration of sulfate from 50 to 100 mg/L. In the presence of 1 mg/L phosphate, arsenic removal decreased gradually as pH increased from 4 to 6, and a sharp drop occurred at pH 7–9. The presence of 10 mg/L silicate had negligible effect on arsenic removal at pH 4–5 whereas decreased the arsenic removal at pH 6–9 and the decrease was more significant at higher pH. The presence of HA dramatically decreased the arsenic removal over the pH range of 6–9 and HA of higher concentration resulted in greater drop in arsenic removal. The effects of the competing anions on arsenic removal in the KMnO4–Fe(II) process were highly dependent on pH and the degree of these four anions influencing As(III) removal decreased in the following order, phosphate > humic acid > silicate > sulfate. Sulfate differed from the other three anions because sulfate decreased the removal of arsenic mainly by competitive adsorption while phosphate, silicate and HA decreased the removal of As(III) by competitive adsorption and sequestering the formation of ferric hydroxide derived from Fe(II).  相似文献   

5.
The results from this research suggest that both calcium phosphate precipitation and enhanced biological uptake play a role in phosphorus removal in the activated sludge process when a non-nitrifying, anaerobic-aerobic system is used to treat a low calcium wastewater. The primary removal mechanism was found to be biological uptake, as calcium phosphate precipitation accounted for only 15–27% of the total phosphorus removed. Calcium phosphate precipitation in the aerobic unit was enhanced because of the pH increase in that reactor. This was the result of low CO2 production (indicated by low specific oxygen uptake values) and intense aeration which caused excessive CO2 stripping in the aerobic unit  相似文献   

6.
We have previously developed a novel photocatalyst, DNA-attached titanium dioxide (DNA-TiO2), useful for the recovery and decomposition of chemicals [Suzuki et al. Environ. Sci. Technol. 42, 8076, 2008]. Chemicals accumulated in DNA near the surface of TiO2 and were degraded under UV light. The efficiency of their removal was dependent on the amount of DNA adsorbed on TiO2, indicating the attachment of larger amounts of DNA to result in higher efficiency. In this study, we succeeded in improving the performance of DNA-TiO2 by increasing the amount of DNA adsorbed by regulating the external pH. The adsorption of DNA by TiO2 dramatically increased at pH2, to about fourfold that at other pH values (pH4-10). Repeating the process of DNA addition increased the adsorption further. The attached DNA was stable on the surface of TiO2 at pH2-10 and 4-56 °C, the same as DNA-TiO2 prepared at pH7. As the DNA-TiO2 prepared at pH2 retained much DNA on its surface, chemicals (methylene blue, ethidium bromide, etc.) which could intercalate or react with DNA were effectively removed from solutions. The photocatalytic degradation was slow at first, but the final degradation rate was higher than for non-adsorbed TiO2 and DNA-TiO2 prepared at pH7. These results indicated that preparation of DNA-TiO2 at pH2 has advantages in that much DNA can be attached and large amounts of chemicals can be concentrated in the DNA, resulting in extensive decomposition under UV light.  相似文献   

7.
Highly porous, nanostructured zirconium oxide spheres were fabricated from ZrO2 nanoparticles with the assistance of agar powder to form spheres with size at millimeter level followed with a heat treatment at 450 °C to remove agar network, which provided a simple, low-cost, and safe process for the synthesis of ZrO2 spheres. These ZrO2 spheres had a dual-pore structure, in which interconnected macropores were beneficial for liquid transport and the mesopores could largely increase their surface area (about 98 m2/g) for effective contact with arsenic species in water. These ZrO2 spheres demonstrated an even better arsenic removal performance on both As(III) and As(V) than ZrO2 nanoparticles, and could be readily applied to commonly used fixed-bed adsorption reactors in the industry. A short bed adsorbent test was conducted to validate the calculated external mass transport coefficient and the pore diffusion coefficient. The performance of full-scale fixed bed systems with these ZrO2 spheres as the adsorber was estimated by the validated pore surface diffusion modeling. With the empty bed contact time (EBCT) at 10 min and the initial arsenic concentration at 30 ppb, the number of bed volumes that could be treated by these dry ZrO2 spheres reached ∼255,000 BVs and ∼271,000 BVs for As(III) and As(V), respectively, until the maximum contaminant level of 10 ppb was reached. These ZrO2 spheres are non-toxic, highly stable, and resistant to acid and alkali, have a high arsenic adsorption capacity, and could be easily adapted for various arsenic removal apparatus. Thus, these ZrO2 spheres may have a promising potential for their application in water treatment practice.  相似文献   

8.
This research studied As(III) and As(V) removal during electrocoagulation (EC) in comparison with FeCl3 chemical coagulation (CC). The study also attempted to verify chlorine production and the reported oxidation of As(III) during EC. Results showed that As(V) removal during batch EC was erratic at pH 6.5 and the removal was higher-than-expected based on the generation of ferrous iron (Fe2+) during EC. As(V) removal by batch EC was equal to or better than CC at pH 7.5 and 8.5, however soluble Fe2+ was observed in the 0.2-μm membrane filtrate at pH 7.5 (10-45%), and is a cause for concern. Continuous steady-state operation of the EC unit confirmed the deleterious presence of soluble Fe2+ in the treated water. The higher-than-expected As(V) removals during batch mode were presumed due to As(V) adsorption onto the iron rod oxyhydroxides surfaces prior to the attainment of steady-state operation. As(V) removal increased with decreasing pH during both CC and EC, however EC at pH 6.5 was anomalous because of erratic Fe2+ oxidation. The best adsorption capacity was observed with CC at pH 6.5, while lower but similar adsorption capacities were observed at pH 7.5 and 8.5 with CC and EC. A comparison of As(III) adsorption showed better removals during EC compared with CC possibly due to a temporary pH increase during EC. In contrast to literature reports, As(III) oxidation was not observed during EC, and As(III) adsorption onto iron hydroxides during EC was only 5-30% that of As(V) adsorption. Also in contrast to literature, significant Cl2 was not generated during EC, in fact, the rods actually produced a significant chlorine demand due to reduced iron oxides on the rod. Although Cl2 generation and As(III) oxidation are possible using a graphite anode, a combination of graphite and iron rods in the same EC unit did not produce As(III) oxidation. However, a two-stage process (graphite anode followed by iron anode in separate chambers) was effective in As(III) oxidation and removal. The competing ions, silica and phosphate interfered with As(V) adsorption during both CC and EC. However, the degree of interference depends on the concentration and presence of other competing ions. In particular, the presence of silica lowered the effect of phosphate with increasing pH due to silica’s own significant effect at high pHs.  相似文献   

9.
The magnetic NiFe2O4 nanoparticles have been synthesized and used as adsorbents for cadmium removal from aqueous solution. The NiFe2O4 nanoparticles were characterized by scanning electron microscope (SEM), Transmission electron microscope (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectra (FTIR). Various parameters, which can affect the adsorption such as pH, adsorption time and adsorbent dose have been fully investigated. The results reveal that the magnetic adsorbent can be easily removed by a simple external magnet with high separation efficiency. In addition, the process is clean and safe for purifying water pollution. The prepared NiFe2O4 magnetic nanoparticles could thus be used as favorable adsorbents for the remove cadmium from polluted water.  相似文献   

10.
Phosphate removal was important for wastewater treatment, and adsorption was an efficient treatment process. In this study, the layered double hydroxide adsorbent (BR‐LDH), which was prepared under alkali conditions using industrial residues boron mud and red mud, was used to adsorb the phosphate. The prepared BR‐LDH was characterised by X‐ray diffraction, Scanning electron microscopy, Energy‐dispersive X‐ray spectroscopy, and Thermo‐gravimetric‐differential thermal analysis. Adsorption experiments were carried out as a function of dosage, contact time, temperature and initial pH of phosphate solution. The removal ratio of phosphate onto OBR‐LDH reached 93%. The adsorption data showed a good compliance with the pseudo‐second‐order kinetic model. In addition, the mineral composition, the functional groups, the valence of elements and zeta potentials of OBR‐LDH before and after adsorption were used to analyse the adsorption mechanism. The result of real wastewater suggested that OBR‐LDH was excellent adsorbent for phosphorus removal from actual wastewater.  相似文献   

11.
A phosphate locking material was developed by coagulating graphene oxide (GO) through La3+ (La-GO). La3+ activates the graphene oxide to enhance the phosphate binding capacity and to coagulate graphene oxide. This achieves better separability during the coagulation process. The resulting La-GO was used to remove phosphate from aqueous solutions. The phosphate removal process was well described by the Langmuir isotherm model, and the maximum binding capacity was estimated to be 141.38 mg g?1. Furthermore, the removal process could attain equilibrium within 20 min and followed the pseudo-second-order kinetic model. The pH of the initial solution had a powerful effect on the phosphate removal capacity: La-GO worked efficiently in neutral and alkaline solutions, but not in extremely acidic solutions. Analysis of the binding mechanism showed that phosphate was trapped and transformed into LaPO4 during the removal process. Our empirical and theoretical findings indicated that phosphate could be effectively removed by La-GO. Consequently, La3+ coagulated GO holds great promise for the advanced treatment of phosphate from wastewater and warrants further research.  相似文献   

12.
Iesan CM  Capat C  Ruta F  Udrea I 《Water research》2008,42(16):4327-4333
The objective of this paper is the evaluation of a hybrid inorganic/organic polymer type material based on hydrated ferric oxide (HFO), in the adsorption process of arsenic oxyanions from contaminated waters used as drinking water. The study includes rapid small-scale column tests conducted in continuous flow operation in order to assess the arsenic removal capacity in various conditions. Thus it was evaluated the influence of some competing ions like silicate and phosphate on As(V) adsorption and the influence of feed water pH in the removal process of As(V) and As(III) species. Based on the As/pH variation in time at different feed water pH (5, 7 and 9), a possible sorption mechanism that fits the experimental data was suggested. The regeneration and re-use of the hybrid adsorbent was studied in the presence and in the absence of the contaminant ions. The novel hybrid material is very selective towards arsenic oxyanions even though the presence of silica and phosphate reduces the adsorption capacity.  相似文献   

13.
The effect of Zn2+ on both the kinetic and equilibrium aspects of arsenic adsorption to magnetite nanoparticles was investigated at pH 4.5-8.0. At pH 8.0, adsorption of both arsenate and arsenite to magnetite nanoparticles was significantly enhanced by the presence of small amount of Zn2+ in the solution. With less than 3 mg/L of Zn2+ added to the arsenic solution prior to the addition of magnetite nanoparticles, the percentage of arsenic removal by magnetite nanoparticles increased from 66% to over 99% for arsenate, and from 80% to 95% for arsenite from an initial concentration of ∼100 μg/L As at pH 8.0. Adsorption rate also increased significantly in the presence of Zn2+. The adsorption-enhancement effect of Zn2+ was not observed at pH 4.5-6.0, nor with ZnO nanoparticles, nor with surface-coated Zn-magnetite nanoparticles. The enhanced arsenic adsorption in the presence of Zn2+ cannot be due to reduced negative charge of the magnetite nanoparticles surface by zinc adsorption. Other cations, such as Ca2+ and Ag+, failed to enhance arsenic adsorption. Several potential mechanisms that could have caused the enhanced adsorption of arsenic have been tested and ruled out. Formation of a ternary surface complex by zinc, arsenic and magnetite nanoparticles is a possible mechanism controlling the observed zinc effect. Zinc-facilitated adsorption provides further advantage for magnetite nanoparticle-enhanced arsenic removal over conventional treatment approaches.

Synopsis

Arsenic adsorption to magnetite nanoparticles at neutral or slightly basic pH can be significantly enhanced with trace amount of Zn2+ due to the formation of a ternary complex.  相似文献   

14.
There is a need for developing low cost, easily and abundantly available, yet efficient, adsorbents for the removal of phosphates during the tertiary treatment of wastewaters. The tamarind nut shell activated carbon (TNSAC) prepared on a laboratory scale has been used to evaluate its performance for phosphate adsorption. This paper describes the laboratory production of this adsorbent material in its various forms, and discusses the effects of the TNSAC process variables (the unrinsed and rinsed forms of the TNSAC and the impregnation ratio) on its performance in adsorbing phosphate. The material has been shown to be a good alternative adsorbent. As much as 95% phosphate removal by the unrinsed TNSAC is possible in about 30 min under the test conditions. The phosphate adsorbing capacity is about two times higher for the unrinsed TNSAC in comparison to the rinsed TNSAC. The adsorption rates, however, transit to extremely low rates towards the end when equilibrium conditions could be attained in about 2 h contact time. The phosphate removal mechanics are adsorption and precipitation/ion exchange when unrinsed TNSAC is used, and adsorption alone for the rinsed TNSAC. The maximum phosphate removal is found to take place at an impregnation ratio of 1.0 for both forms of the TNSAC.  相似文献   

15.
Magnetic Fe3O4 nano-particles were prepared successfully from commonplace sands as a raw material. The nano-particles were synthesized by chemical co-precipitation of high purity iron separated from commonplace sands through acidic leaching. The characterization of the synthesized nano-particles was performed using X-ray diffraction, fourier transform infrared, scanning electron microscopy, transmission electron microscopy, and potential zeta. Finally, the nano-particles were used for adsorption of humic acid (HA) from aqueous solutions using batch adsorption technique. The effects of pH, adsorbent dosage, agitation time, initial HA concentration, and temperatures on HA adsorption were evaluated. The adsorption of HA onto nano-particles followed the Sips isotherm and pseudo-second order kinetics models. Thermodynamic parameters data indicated that the HA adsorption process was non-spontaneous and endothermic under the experimental conditions. The adsorption of HA from peat water (the real sample) using the nano-particles demonstrated that they were an adsorbent with great potential for the removal of HA from peat water.  相似文献   

16.
The individual and combined effects of changes in water quality (i.e. pH, initial concentrations of arsenate (As(V)) and competing ions) and empty bed contact time (EBCT) on As(V) removal performance of a fixed-bed adsorber (FBA) packed with a nanostructured goethite-based granular porous adsorbent were systematically studied under environmentally relevant conditions. Rapid small scale column tests (RSSCTs) were extensively conducted at different EBCTs with synthetic waters in which pH and the concentrations of competing ions (phosphate, silicate, and vanadate) were controlled. In the absence of the competing ions, the effects of initial As(V) concentration, pH, and EBCT on As(V) breakthrough curves were successfully predicted by the homogeneous surface diffusion model (HSDM) with adsorption isotherms predicted by the extended triple layer model (ETLM). The interference effects of silicate and phosphate on As(V) removal were strongly influenced by pH, their concentrations, and EBCT. In the presence of silicate (≤21 mg/L as Si), a longer EBCT surprisingly resulted in worse As(V) removal performance. We suggest this is because silicate, which normally exists at much higher concentration and moves more quickly through the bed than As(V), occupies or blocks adsorption sites on the media and interferes with later As(V) adsorption. Here, an alternative operating scheme of a FBA for As(V) removal is proposed to mitigate the silicate preloading. Silicate showed a strong competing effect to As(V) under the tested conditions. However, as the phosphate concentration increased, its interference effect dominated that of silicate. High phosphate concentration (>100 μg/L as P), as experienced in some regions, resulted in immediate As(V) breakthrough. In contrast to the observation in the presence of silicate, longer EBCT resulted in improved As(V) removal performance in the presence of phosphate. Vanadate was found to compete with As(V) as strongly as phosphate. This study reveals the competitive interactions of As(V) with the competing ions in actual adsorptive treatment systems and the dependence of optimal operation scheme and EBCT on water quality in seeking improved As(V) removal in a FBA.  相似文献   

17.
The optimization of TiO2-impregnated chitosan beads (TICB) as an arsenic adsorbent is investigated to maximize the capacity and kinetics of arsenic removal. It has been previously reported that TICB can 1) remove arsenite, 2) remove arsenate, and 3) oxidize arsenite to arsenate in the presence of UV light and oxygen. Herein, it is reported that adsorption capacity for TICB is controlled by solution pH and TiO2 loading within the bead and enhanced with exposure to UV light. Solution pH is found to be a critical parameter, whereby arsenate is effectively removed below pH 7.25 and arsenite is effectively removed below pH 9.2. A model to predict TICB capacity, based on TiO2 loading and solution pH, is presented for arsenite, arsenate, and total arsenic in the presence of UV light. The rate of removal is increased with reductions in bead size and with exposure to UV light. Phosphate is found to be a direct competitor with arsenate for adsorption sites on TICB, but other relevant common background groundwater ions do not compete with arsenate for adsorption sites. TICB can be regenerated with weak NaOH and maintain full adsorption capacity for at least three adsorption/desorption cycles.  相似文献   

18.
Zhengchao Xu  Shian Gao 《Water research》2010,44(19):5713-5721
Hydrous titanium dioxide (TiO2·xH2O) nanoparticles were synthesized by a low-cost one-step hydrolysis process with aqueous TiCl4 solution. These TiO2·xH2O nanoparticles ranged from 3 to 8 nm and formed aggregates with a highly porous structure, resulting in a large surface area and easy removal capability from aqueous environment after the treatment. Their effectiveness on the removal of As(III) (arsenite) from water was investigated in both laboratory and natural water samples. The adsorption capacity on As(III) of these TiO2·xH2O nanoparticles reached over 83 mg/g at near neutral pH environment, and over 96 mg/g at pH 9.0. Testing with a As(III) contaminated natural lake water sample confirmed the effectiveness of these TiO2·xH2O nanoparticles in removing As(III) from natural water. The high adsorption capacity of the TiO2·xH2O nanoparticles is related to the high surface area, large pore volume, and the presence of high affinity surface hydroxyl groups.  相似文献   

19.
In this study, two of our recently developed laboratory scale wastewater treatment systems, fluidised-bed reactor (FBR) using formulated clay mixture absorbents (clay-FBR adsorption) and an annular slurry photoreactor (ASP) using TiO2 impregnated kaolin catalysts (TiO2-K-ASP) were integrated as an adsorption-photocatalysis hybrid process to treat municipal wastewater as alternative secondary and tertiary treatment for wastewater reclamation. Primary effluent from sewage and secondary effluent from a membrane bioreactor treatment process were used to assess chemical removal capabilities of the FBR and ASP systems, and the hybrid process. The formulated clays-FBR system demonstrated the prevailing removal efficiency toward PO43−, NO3 and suspended solids. The TiO2-K-ASP showed superior degradation of dissolved organic content; while the presence of inorganic ions caused a detrimental effect on its performance. The integration of the adsorption and degradation system as a hybrid treatment process resulted in a synergetic enhancement for the chemical removal efficiency. Complete elimination of PO43− content was obtained in the adsorption stage; while 30% and 65% NO3 removal were obtained from the hybrid treatment of the primary and secondary effluents, respectively. The corresponding COD reduction during the photodegradation was further investigated by the high-performance size exclusion chromatography technique, where it revealed the shift of apparent molecular weight of the dissolved organic contaminants toward the smaller region. This present study demonstrated that this adsorption-photocatalysis hybrid technology can be used as a feasible alternative treatment process for wastewater reclamation.  相似文献   

20.
Aerobic granular sludge from a lab-scale reactor with simultaneous nitrification/denitrification and enhanced biological phosphorus removal processes exhibited significant amount of ammonium adsorption (1.5 mg NH4+-N/g TSS at an ammonium concentration of 30 mg N/L). Potassium release accompanied ammonium adsorption, indicating an ion exchange process. The existence of potassium magnesium phosphate (K-struvite) as one of potassium sources in the granular sludge was studied by X-ray diffraction analysis (XRD). Artificially prepared K-struvite was indeed shown to adsorb ammonium. Alginate-like exopolysaccharides were isolated and their inducement for struvite formation was investigated as well. Potassium magnesium phosphate proved to be a major factor for ammonium adsorption on the granular sludge. Struvites (potassium/ammonium magnesium phosphate) accumulate in aerobic granular sludge due to inducing of precipitation by alginate-like exopolysaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号