首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
改进固相法制备LiFePO4/C正极材料及其性能   总被引:1,自引:0,他引:1  
采用改进的固相反应法制备了掺碳的磷酸铁锂正极材料,并用XRD,SEM,元素分析,红外光谱及激光粒度分布仪等对样品进行了测试分析.结果表明,样品具有单一的橄榄石结构和较好的放电平台(约3.4V),粒度较小粒径分布均匀,0.1C首次放电比容量为137.8mAh/g,循环20次后容量保持率为92.6%,以1C倍率首次放电比容量为129.6mAh/g,循环20次后容量下降10.8%.  相似文献   

2.
用化学氧化聚合制备了十二烷基苯磺酸(DBSA)掺杂的导电聚苯胺(PANI)材料,采用恒流充放电、循环伏安和交流阻抗等电化学方法对其作为锂离子电池正极材料的电化学性能进行了研究,并利用红外光谱对聚合物循环前后的结构进行表征.结果表明,聚苯胺正极具有较高的放电容量,首次放电容量达63.3mAh/g,20次充放电循环后保持在48.5mAh/g.循环伏安曲线及交流阻抗谱表明聚苯胺具有较好的电化学活性.红外光谱测试表明,聚苯胺正极在20次充放电循环后结构基本保持不变.  相似文献   

3.
采用水热法合成了纯MoS2及MoS2/有序介孔碳复合材料(MoS2/OMC)。X射线衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)及循环伏安曲线(CV)等分别用来表征样品的结构、形貌及电化学性能。实验结果表明,以钼酸钠和硫脲分别为钼、硫源合成的MoS2/OMC复合材料的性能较纯MoS2有明显提升。MoS2/OMC复合材料的首次放电容量达到1247mAh/g,第二、三次的放电容量分别为948mAh/g、894mAh/g,容量保持率为94%。二、三次充、放电曲线的近乎重合及高倍率下的高放电容量,亦表明该复合电极有极佳的循环稳定性及良好的可逆性。  相似文献   

4.
采用水热法合成了纯MoS2及MoS2/有序介孔碳复合材料(MoS2/OMC)。X射线衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)及循环伏安曲线(CV)等分别用来表征样品的结构、形貌及电化学性能。实验结果表明,以钼酸钠和硫脲分别为钼、硫源合成的MoS2/OMC复合材料的性能较纯MoS2有明显提升。MoS2/OMC复合材料的首次放电容量达到1247mAh/g,第二、三次的放电容量分别为948mAh/g、894mAh/g,容量保持率为94%。二、三次充、放电曲线的近乎重合及高倍率下的高放电容量,亦表明该复合电极有极佳的循环稳定性及良好的可逆性。  相似文献   

5.
以LiAc·2H2O、Mn(Ac)2·4H2O、Ni(Ac)2·4H2O为原料,采用水溶液法合成锂离子电池正极材料LiNi0.5Mn0.5O2和Li1.2Ni0.3Mn0.5O2。通过X射线衍射(XRD)、扫描电子显微镜(SEM)对所得样品的结构和形貌进行表征,并测试了该材料的电化学性能。结果表明,样品LiNi0.5Mn0.5O2首次放电比容量能达到125.6mAh/g,经过30周循环以后,放电比容量为111.2mAh/g,容量保持率为96.2%;而富锂样品Li1.2Ni0.3Mn0.5O2首次放电比容量能达到187.2mAh/g,经过30周循环以后放电比容量为184.5mAh/g,容量保持率为98.6%,远高于富锂前样品。另外,富锂后的样品Li1.2Ni0.3Mn0.5O2倍率性能优于富锂前。  相似文献   

6.
李军  黄慧民  魏关锋  夏信德  李大光 《材料导报》2007,21(11):125-126,129
为提高LiFePO4的电化学性能,通过固相合成法制备了掺碳的LiFePO4正极材料,并用XRD、SEM、电化学工作站及充放电测试等对样品的性能进行了研究分析.结果表明,少量的碳掺杂并未改变LiFePO4的晶体结构但显著改善了其电化学性能,LiFePO4/C样品的粒度较小,粒径分布均匀,0.1C首次放电比容量为141.9mAh/g,循环50次后容量下降了11.2mAh/g,以1C倍率首次放电比容量为126.5mAh/g,循环50次后容量保持率为87.2%.  相似文献   

7.
钴掺杂纳米花瓣状氢氧化镍的制备及其电化学性能研究   总被引:1,自引:0,他引:1  
采用水热法制备了钴掺杂的纳米花瓣状Ni(OH)2,讨论了钴掺杂量对产物形貌、结构和电化学性能的影响。结果表明,不同钴摩尔分数掺杂的样品都呈现α/β混合相花瓣微球,其比表面积均在280m2/g以上,远高于普通球形氢氧化镍(5~10m2/g)。电化学性能测试表明,钴添加剂显著提高了氢氧化镍高倍率放电容量和循环稳定性能,1.0C倍率时钴摩尔分数10%的样品放电容量可达430.1mAh/g(以纯氢氧化镍计),接近-αNi(OH)2的理论容量(480mAh/g),3.0C倍率时其放电容量(367.1mAh/g)仅比0.2C时的放电容量(406.9mAh/g)衰减9.8%。  相似文献   

8.
以碳纳米管和氧化石墨烯为原料,二者按5∶3混合超声分散再高温还原制备碳纳米管/石墨烯/天然石墨(CNTs/rGO/NG)锂离子复合负极材料。采用扫描电镜(SEM)、X射线衍射(XRD)、红外光谱(FTIR)和电化学测试等分析技术对复合材料的形貌、结构、电化学进行表征。结果表明:石墨烯和碳纳米管在天然石墨表面形成三维立体网络结构。与纯天然石墨相比,CNTs/rGO/NG复合材料具有良好的倍率性能和循环寿命,在0.1C时首次放电比容量为479mAh/g,可逆容量达473mAh/g,循环100次后容量为439.5mAh/g,容量保持率为92%,在0.5,1,5C不同电流倍率时容量依次为457,433,394mAh/g。  相似文献   

9.
以Li_2CO_3和TiO_2为原料,采用两步煅烧法合成锂离子电池负极材料钛酸锂。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、恒电流充放电和电化学阻抗等技术研究合成材料的结构、形貌及电化学性能。结果表明:两步煅烧法合成出的Li_4Ti_5O_(12)晶粒大小均匀,表面光滑,分散性好。在0.5C下,首次放电比容量为153.5mAh/g,循环45次后,容量保持率高达95.1%;在2C时,首次放电比容量为100.1mAh/g。两步煅烧法合成出的Li_4Ti_5O_(12)在嵌脱锂过程中的极化较小,电荷转移阻抗值最小,材料表现出优良的电化学性能。  相似文献   

10.
以FeC2O4·2H2O和LiH2PO4为原料,经过两步机械活化后在惰性气氛中经高温烧结,合成出LiFePO4正极材料.研究了合成温度与反应时间对材料性能的影响.采用X射线衍射仪和扫描电镜分析样品的晶体结构和表面形貌,结果表明,600℃下烧结18h合成的样品具有规则的橄榄石型结构.样品的电化学性能良好,在室温下以0.1C倍率充放电,首次放电比容量可达到155.6mAh/g,为其理论容量的91.53%,且循环50次后比容量仅衰减4.11%,采用1C倍率放电时,首次放电比容量达到149.3mAh/g.  相似文献   

11.
孙杰  赵东林  刘辉  景磊  迟伟东  沈曾民 《功能材料》2012,43(15):2027-2030
以二茂铁为铁源,石油渣油为碳源,通过加压热解和空气氧化制备了碳包覆空心Fe3O4纳米粒子。采用X射线衍射(XRD)、透射电镜(TEM)以及高倍透射电镜(HRTEM)等测试方法对样品的形貌和结构进行表征。采用恒流充放电和交流阻抗方法测试碳包覆空心Fe3O4纳米粒子作为锂离子电池负极材料的电化学性能。在电流密度为0.2mA/cm2时,首次放电比容量高达1294.7mAh/g,30次循环之后其放电比容量为392.1mAh/g;电流密度为1mA/cm2时,首次放电比容量为216.3mAh/g,30次循环之后其放电比容量为113mAh/g。  相似文献   

12.
采用高温固相法制备CrNbO_4,并首次研究其作为锂离子电池负极材料的电化学性能。使用X射线衍射分析(XRD)、扫描电子显微镜(SEM)、充放电测试、循环伏安(CV)测试和电化学交流阻抗测试(EIS)对材料的结构、形貌和电化学性能进行表征。样品CrNbO_4在0.001~3.0V电压区间,电流密度为16 mA/g时,充放电50次后放电容量可以保持在63.5mAh/g。通过球磨,CrNbO_4的首次放/充电容量由212.9/100.9 mAh/g提高到572.3/343.5mAh/g,同时电流密度提高10倍,充放电50次后改性样品的放电容量仍可维持81.3mAh/g,有效提高了电化学性能。  相似文献   

13.
以高纯金属锰粉和碳酸锂为原料,通过机械活化氧化法合成了尖晶石LiMn2O4材料。采用X射线衍射(XRD)和扫描电镜(SEM)对LiMn2O4样品结构及形貌进行表征,用充放电测试和交流阻抗技术对LiMn2O4样品进行电化学性能研究。结果表明,所制备的LiMn2O4具有完整的尖晶石型结构,且颗粒形貌规整,颗粒大小均匀。所制备的LiMn2O4材料室温(25℃)在3.0~4.3V电压范围,在0.1C倍率下首次放电比容量为125.8mAh/g;2C首次放电容量为120.1mAh/g,300次循环后放电容量保持103.9mAh/g,容量保持率为86.51%。且样品具有较好的高温性能和较小的阻抗。  相似文献   

14.
用直流电弧等离子体法制备金属钼纳米粉体再使其与赤磷发生固相反应,用两步法制备出磷化钼纳米粒子。使用X射线衍射(XRD)和透射电镜(TEM)等手段表征磷化钼纳米粒子的结构并进行了电化学性能测试。结果表明,MoP纳米粒子呈球状,粒径为20~50 nm;在电流密度为100 mA/g的条件下MoP纳米粒子负极材料的首次放电比容量达到746 mAh/g,50次循环后放电比容量为241.9 mAh/g;电流密度为2000 mA/g时放电比容量为99.90 mAh/g,电流密度恢复到100 mA/g其放电比容量仍然保持247.60 mAh/g。用作锂离子电池的负极材料,MoP纳米粒子具有优异的稳定性和可逆性。  相似文献   

15.
采用沉淀法制备了作为锂离子电池负极材料的纳米锡铜复合氧化物粉末,并用X射线衍射对其结构进行了分析、透射电镜对其形貌进行了表征、充放电和循环伏安法等对其电化学性能进行了测试.结果表明:采用沉淀法可以制备出颗粒粒度较均匀、尺寸为90nm的锡铜复合氧化物;充放电30次到50次,锡铜复合氧化物放电容量由254.4mAh/g衰减到241.1mAh/g,放电容量保持率较高(95%),说明纳米锡铜复合氧化物具有较高的放电容量和良好的循环性能。  相似文献   

16.
为了探究膨胀石墨的储钠性能,利用电化学法制备了膨胀石墨,采用XRD对其结构进行了表征,并利用恒电流充放电、循环伏安(CV)、电化学阻抗谱(EIS)对其储钠性能进行了分析。结果表明,鳞片石墨经过电化学氧化再经过高温瞬时膨胀之后,层间距略微增大,但依然保持着石墨的层状结构。以二乙二醇二甲醚(DEGDME)为电解液,膨胀石墨对钠离子表现出较好的嵌/脱钠容量、倍率性能和循环性能:当电流密度为700mA/g时,其可逆比容量为110.9mAh/g,是10mA/g时容量的66.8%。在100mA/g电流密度下循环100次时,其第100次循环时的放电比容量为154.8 mAh/g,第一次循环时的放电比容量为134.8 mAh/g,容量保持率为114.8%。通过PITT测试,得出钠离子在膨胀石墨中的化学扩散系数为DNa+=7.7×10-8 cm2/s。  相似文献   

17.
以聚乙烯吡咯烷酮(PVP)为碳前驱体,聚碳硅烷(PCS)为增强相,采用静电纺丝和退火工艺制备SiCO@CNFs复合材料。通过扫描电子显微镜(SEM)、X射线衍射仪(XRD)、X射线光电子能谱(XPS)、热重分析(TG)和傅利叶变换红外光谱(FT-IR)等方法对样品进行结构表征;通过电化学工作站和高性能电池检测系统对样品电化学性能进行测试。结果表明,在100mA/g的电流密度下,SiCO@CNFs复合材料的初始放电容量为1498.71mAh/g。在电流密度为300mA/g时,经过500次循环后,SiCO@CNFs的容量保持率可为49%,而CNFs的容量保持率仅为12%。SiCO@CNFs显示出优异的锂存储性能和循环稳定性。  相似文献   

18.
以磷铁为原料,采用两步烧结的碳热还原法成功合成了LiFePO4材料并研究了不同时间对烧结产物的影响,该方法可以实现原料的循环利用,对环境零排放。采用XRD,恒电流充放电法,交流阻抗对样品晶型和电化学性能进行表征和研究。烧结15h的样品具有最接近标准卡片的晶型,在0.05C时的放电容量也最大可以达到162.3mAh/g。在0.5C循环15次后放电容量仍有124.6mAh/g,衰减仅为2.02%,具有良好的循环性。对比4个样品,15h烧结的样品也就有最小的反应阻抗仅为56Ω。  相似文献   

19.
共沉淀法制备锂离子电池正极材料LiFePO4及其性能研究   总被引:6,自引:0,他引:6  
用共沉淀的方法制备了改性的锂离子电池正极材料LiFePO4,利用X射线衍射(XRD)、扫描电镜(SEM)、傅立叶红外光谱(FTIR)等方法对样品的晶体结构、表观形貌、谱学性质等进行了分析研究,并在表观形貌和电性能上与固相法制备的样品进行比较.结果表明,此种方法制备的LiFePO4为单一的橄榄石型晶体结构,具有3.4V左右的放电电压平台,该材料具有良好的电性能,分别以0.2,0.4mA/cm2的电流密度充放电,首次放电比容量达到142.3,127mAh/g,充放电循环20次后放电比容量仍保持在129.7,105.5mAh/g.  相似文献   

20.
碳热还原法制备LiVPO4F及其电化学性能   总被引:2,自引:0,他引:2  
钟胜奎  尹周澜  王志兴  陈启元 《功能材料》2006,37(10):1613-1616
以LiF、V2O5和NH4H2PO4为原料,C为还原剂,采用碳热还原法两步合成了锂离子电池正极材料LiVPO4F.考察了不同合成温度、时间对产物晶形结构、形貌和电化学性能的影响.结果表明,当合成温度、时间分别为750℃、30min时,所合成的LiVPO4F样品属于三斜晶系,且颗粒分布比较均匀.该材料以0.2C充放电,首次放电容量为119mAh/g,放电平台在4.2V左右(vs.Li/Li ),循环30次后其比容量达89mAh/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号