首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 153 毫秒
1.
双转台五轴数控机床误差实时补偿   总被引:8,自引:1,他引:7  
以双转台五轴数控机床为对象,建立各移动轴和旋转轴运动的数学模型,以工件坐标系为基础坐标系,应用齐次坐标系变换理论,推导任一时刻各轴运动在工件坐标系中的位置误差数学表达式.针对五轴机床的移动轴和旋转轴同时运动存在耦合的情况,提出一种分步实施的解耦补偿方法,即在实施误差补偿时首先进行姿态误差补偿,通过旋转轴的旋转运动将工件的实际姿态调整到与理想姿态相同,然后通过移动轴的平移运动进行位置误差补偿,并相应建立五轴机床误差补偿数学模型.通过仿真分析和对曲面零件的实时补偿加工试验,明显提高加工精度,并有效避免直接进行补偿加工过程中可能带来的运动干涉情况,从而验证该五轴机床误差补偿数学模型及其实时补偿的可行性和有效性.  相似文献   

2.
五轴数控机床综合误差补偿解耦研究   总被引:12,自引:1,他引:12  
五轴数控机床具有3个移动副和2个转动副,能对复杂曲面实现高精度加工,然而其误差补偿运动却比较复杂,因为其各运动副的误差补偿运动量与刀具和工件间的误差值(位置及方向误差)间存在一定的耦合关系。通过分析五轴机床的运动特点,用齐次坐标变换的方法建立了各运动副坐标系间的变换矩阵。基于小误差补偿运动假设,分析了误差运动和补偿运动间的相互关系,对五轴机床各运动副的位置及方向误差补偿运动进行了解耦,建立了可以进行空间五个误差补偿量计算的数学模型,为五轴机床的误差实时补偿提供了理论基础。  相似文献   

3.
数控机床误差补偿是提高数控机床加工精度的有效方法,而建立快速准确的误差模型又是实施误差补偿的前提和基础。以多功能复合五轴数控机床为对象,阐述了五轴数控机床的综合误差建模过程,对传统建模过程中刀具、工件和参考坐标系之间的关系进行了优化处理,得到了包含方向误差在内的综合数学模型。  相似文献   

4.
五轴数控机床的几何误差和热误差是影响工件加工精度的两个重要因素,对这些误差因素进行分析可以有效提高薄壁件工件的加工精度。本文首先基于齐次坐标变换法,建立了双转台五轴数控机床的旋转轴几何误差模型;然后基于对标准球进行在机接触测量,辩识得出两旋转轴的12项几何误差,这些误差考虑了两旋转轴之间的相互影响和其热误差的影响;最后分析五轴数控机床加工空间的几何误差场,在该加工空间内几何误差从中心到外侧逐渐增加,当A轴旋转角度增加时,误差的最大值也随之增加。与其它位置误差辨识方法相比,本方法的测量精度符合加工要求,测量时间只需要30 min。  相似文献   

5.
基于牛顿插值的批量轴类零件加工误差补偿   总被引:1,自引:0,他引:1  
为提高批量轴类零件加工精度及加工效率,通过分析批量轴类零件加工数据,得到加工误差分布规律;运用牛顿插值理论建立批量轴类零件加工误差数学模型:应用用户宏程序按工件序号及切削位置进行误差实时补偿.该误差补偿方法综合考虑切削力引起的误差、热误差、刀具磨损误差、机床几何误差、编程误差、检测调整误差等误差因素,全面分析各误差因素与误差分布规律的关系,避免了误差因素分析不全的影响.得出切削力是影响单件工件加工误差分布的主要因素,刀具磨损是影响批量轴类零件加工误差分布的主要因素,热误差是导致误差分布规律畸变的主要因素.实践表明,应用该误差补偿方法可使批量轴类零件最大加工误差由60μm降低到4μm,补偿了93.3%;减少在机检测调整时间,加工效率提高13%,有效提高批量轴类零件加工精度和加工效率.  相似文献   

6.
基于敏感度分析的机床关键性几何误差源识别方法   总被引:10,自引:1,他引:10  
零部件几何误差耦合而成的机床空间误差是影响其加工精度的主要原因,如何确定各零部件几何误差对加工精度的影响程度从而经济合理地分配机床零部件的几何精度是目前机床设计所面临的一个难题。基于多体系统理论,在敏感度分析的基础上提出一种识别关键性几何误差源参数的新方法。以一台四轴精密卧式加工中心为例,基于多体系统理论构建加工中心的精度模型,并利用矩阵微分法建立四轴数控机床误差敏感度分析的数学模型,通过计算与分析误差敏感度系数,最终识别出影响机床加工精度的关键性几何误差。计算和试验分析表明,该方法可以有效地识别出对机床综合空间误差影响较大的主要零部件几何误差因素,从而为合理经济地提高机床的精度提供重要的理论依据。  相似文献   

7.
夏链  汪晟  韩江  张魁榜  田晓青 《中国机械工程》2013,24(17):2306-2310
为提高数控插齿加工精度,需对其误差进行补偿。通过分析插齿机床的运动特点,建立了插齿机运动模型;基于机床误差运动学原理,推导出用齐次变换矩阵描述的刀具相对于工件的误差模型;基于小误差补偿运动假设和微分变换原理,对各轴运动副的误差补偿量与刀具相对于工件的位置及方向误差模型间存在的耦合关系进行了解耦,获得了影响插齿加工精度的各运动副位置或方向误差补偿量。  相似文献   

8.
三轴数控铣床切削力引起的误差综合运动学建模   总被引:5,自引:0,他引:5       下载免费PDF全文
使用齐次坐标变换的方法建立了三轴数控铣床的切削力误差综合数学模型.首先基于三轴数控铣床的结构分析对切削力误差元素进行识别,然后在机床各运动部件上建立一系列坐标系并推导出各相邻坐标系间的齐次坐标变换矩阵,最后根据切削加工中刀具切削点与工件正被切削点在基坐标系中的坐标值相同列出等式,推导出切削力误差综合模型.该模型包含30个对机床加工精度影响较大的切削力误差元素,适用于计算误差补偿时的补偿量.  相似文献   

9.
五轴数控机床动态性能是影响工件加工质量的重要因素,S型试件作为校验机床动态性能的检验试件,在实际应用中取得了一定成果.为进一步确定机床的加工状态,提高工件加工质量,提出了一种基于S型试件切削的五轴数控机床动态因素辨识方法.综合采用了多体运动学、模糊理论、BP神经网络理论对机床动态因素进行辨识.该方法可以用于评估数控机床的动态性能,通过误差溯源给出的机床动态因素,可用于指导机床的维修和调整,保障关键工件的数控加工质量.  相似文献   

10.
机床在加工过程中其工艺系统会产生各种误差,从而影响零件的加工精度。工件的加工精度在很大程度上取决于机床的精度,研究机床加工过程误差的产生及防止对提高机床加工精度有着重要的意义。  相似文献   

11.
针对现有误差元素灵敏度分析与后续误差补偿关联性不强的问题,建立运动轴几何误差贡献值模型并提出运动轴几何误差灵敏度分析方法,以获得本身几何误差对机床精度有很大影响的关键运动轴。结合指数积理论和坐标系微分运动理论建立基于误差敏感矩阵的运动轴几何误差贡献值模型,各运动轴几何误差贡献值相加得到机床综合误差模型;计算各运动轴误差权重分量和误差综合权重实现运动轴误差灵敏度分析,选择误差综合权重平均值最大的运动轴为机床关键运动轴,并对关键运动轴的误差补偿方法进行分析讨论。最后,在北京精雕集团的五轴加工中心上进行仿真实验验证。研究结果表明:所建立模型和所提出分析方法是有效的,且只补偿关键运动轴的几何误差贡献值能有效地提高五轴机床加工精度。  相似文献   

12.
为修正五轴数控机床加工误差,提高五轴数控机床加工质量,提出一种新的五轴数控机床加工误差动态修正方法.构建五轴数控机床加工误差计算模型,获取五轴数控机床加工的刀心方位、刀轴方位轮廓误差;锁定误差方位后,通过五轴数控机床误差的动态实时补偿方法,实现五轴数控机床加工误差动态修正.研究结果表明:所提方法可实现全方位、高效率的五...  相似文献   

13.
五轴数控机床的加工性能在制造行业一直是研究的热点,基于检验试件切削是常见的测评方法,然而试件和机床之间的映射关系难以确定,出现误差后如何调整精度成为难点。为了科学对其评价,通过仿真平台建立了机床控制系统参数与五轴机床检验试件——S试件加工误差之间的映射关系,引入机床各轴分类评价的隶属度,此基础上开发了误差溯源的综合评价体系,由三坐标测量机得到的S件轮廓误差数据反求出机床的加工性能等级和较差的轴类控制参数,并制订了基于S试件的机床加工精度测评规范,最后通过某五轴AB摆数控机床的切削试验,验证了方法的有效性。该成果有助于解决我国高端制造业长期缺乏机床性能测评的共性技术问题,具有重要的应用前景和经济价值。  相似文献   

14.
双转台五轴机床空间误差补偿技术研究   总被引:1,自引:0,他引:1  
几何误差、热误差和切削力误差占到了机床总误差的75%,对这3项误差进行控制是提高机床加工精度的关键所在。以双转台五轴机床的空间误差作为研究对象,通过对加工位置、主要热源及电动机电流等相关因素进行分析,确定空间误差建模所需的位移变量、温度变量和切削力变量。以现有的多种误差建模方法为基础,通过对信息融合技术进行研究,提出一种机床空间误差的多模型融合预测方法,建立综合反映几何误差、热误差和切削力误差的最优空间误差模型。最后以DSP为核心,设计空间误差补偿器,实施空间误差补偿,验证补偿效果。结果显示,建立的模型预测精度较高,残差小于2μm,而实施空间误差补偿后,加工零件的轮廓误差也由15μm降到了5μm,补偿效果明显。  相似文献   

15.
谢东  丁杰雄  霍彦波  杜丽  王伟 《中国机械工程》2012,23(12):1387-1392
在五轴联动数控机床中,转动轴进给系统的动态精度对轮廓误差的影响是不可忽视的。采用不同空间位置上的外形轮廓,对五轴联动数控机床转动轴的联动运动产生的轮廓误差进行分析。在建立转动轴进给系统模型的基础上,利用刀具位置系统到加工系统的转换得到转动轴指令,通过进给系统动态误差模型得到仿真输出指令,再将输出指令从加工系统转换回刀具位置系统,比较刀具位置的偏差,从而得到轮廓误差。找出轮廓误差点与外形轮廓空间位置之间的对应关系,利用这种关系可快速通过轮廓误差来考察转动轴进给系统的动态性能,为机床快速调整和维修提供一种手段。  相似文献   

16.
摆动主轴作为五轴加工领域的关键零部件,其摆动精度在很大程度上决定了数控机床的加工精度。文中阐述了TS640测头的工作原理及在建立摆动误差模型时的应用,对摆动误差进行测量,并建立了误差补偿的数学模型。为数控机床的误差补偿提供理论依据,提高了五轴数控加工中心的加工精度。  相似文献   

17.
On a five-axis CNC machine tool, the pretravel errors of touch-trigger probes are severely affected by gravity and must be compensated to ensure the required measurement accuracy. The situation is more complex than that of the three-axis on-machine inspection system. This paper proposes a simple and accurate modeling and compensation method for the probe pretravel error of a five-axis on-machine inspection system. First, the pretravel error for the 5-axis CNC tool is decoupled into three parts, which are analyzed based on the probe's mechanical structure. Then, a new calibration point selection strategy is proposed to obtain the accurate reference sphere center. Finally, we carry out calibration tests to validate the proposed method. The compensation results show that the proposed compensation method for the probe pretravel error under the influence of gravity (PPEUG) can improve the accuracy considerably.  相似文献   

18.
In the machining of sculptured surfaces, five-axis CNC machine tools provide more flexibility to realize the cutter position as its axis orientation spatially changes. Conventional five-axis machining uses straight line segments to connect consecutive machining data points, and uses linear interpolation to generate command signals for positions between end points. Due to five-axis simultaneous and coupled rotary and linear movements, the actual machining motion trajectory is a non-linear path. The non-linear curve segments deviate from the linearly interpolated straight line segments, resulting in a non-linearity machining error in each machining step. These non-linearity errors, in addition to the linearity error, commonly create obstacles to the assurance of high machining precision. In this paper, a novel methodology for solving the non-linearity errors problem in five-axis CNC machining is presented. The proposed method is based on the machine type-specific kinematics and the machining motion trajectory. Non-linearity errors are reduced by modifying the cutter orientations without inserting additional machining data points. An off-line processing of a set of tool path data for machining a sculptured surface illustrates that the proposed method increases machining precision.  相似文献   

19.
A machining test of cone frustum, described in NAS (National Aerospace Standard) 979, is widely accepted by machine tool builders to evaluate the machining performance of five-axis machine tools. This paper discusses the influence of various error motions of rotary axes on a five-axis machine tool on the machining geometric accuracy of cone frustum machined by this test. Position-independent geometric errors, or location errors, associated with rotary axes, such as the squareness error of a rotary axis and a linear axis, can be seen as the most fundamental errors in five-axis kinematics. More complex errors, such as the deformation caused by the gravity, the pure radial error motion of a rotary axis, the angular positioning error of a rotary axis, can be modeled as position-dependent geometric errors of a rotary axis. This paper first describes a kinematic model of a five-axis machine tool under position-independent and position-dependent geometric errors associated with rotary axes. The influence of each error on machining geometric accuracy of a cone frustum is simulated by using this model. From these simulations, we show that some critical errors associated with a rotary axis impose no or negligibly small effect on the machining error. An experimental case study is presented to demonstrate the application of R-test to measure the enlargement of a periodic radial error motion of C-axis with B-axis rotation, which is shown by present numerical simulations to be among potentially critical error factors for cone frustum machining test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号