首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
BACKGROUND: It is well known that the foaming properties of egg white protein are significantly reduced when a small amount of yolk is mixed in the white. To improve foaming properties of yolk‐contaminated egg white protein, soy protein isolate (SPI) and egg proteins were modified to make basic proteins, and effects of these modified proteins on egg white foaming were evaluated in a model and an angel cake system. RESULTS: SPI and egg yolk proteins were modified to have an isoelectric point of 10, and sonication was used to increase protein dispersibility after the ethyl esterification reaction. However, only the addition of sonicated and modified SPI (SMSPI) showed improvement of foaming in the 5% egg protein model system with 0.4% yolk addition. SMSPI was then used in making angel food cake to examine whether the cake performance reduction due to yolk contamination of the white would be restored by such alkaline protein. Cake performance was improved when cream of tartar was used together with SMSPI. CONCLUSION: Basic soy protein can be made and used to improve egg white foaming properties and cake performance. Copyright © 2012 Society of Chemical Industry  相似文献   

2.
Egg yolk contamination of egg whites continues to be a serious problem in the egg industry. The ability of egg whites to form stable and voluminous foams is greatly inhibited by yolk contamination, even at very low levels, between 0.01% and 0.2% w/w yolk in white. Experiments were conducted to determine if Mucor miehei lipase could regenerate the functional properties of yolk-contaminated egg whites. Lipase from M. miehei and colipase from porcine pancreas were added to yolk-contaminated (0.2%, w/w) egg white samples to hydrolyze triglycerides originating from egg yolk. Enzymatic hydrolysis of triacylglycerols was confirmed using thin-layer chromatography. Treatment of yolk-contaminated samples with lipase and colipase yielded significant (P < 0.05) improvements in a number of the functional properties, including the final foam volume, foam capacity, and foaming power. These functional properties showed complete restoration to control levels. However, foam stability and foam drainage levels were not statistically different from yolk-contaminated samples that had not been enzymatically treated. Enzyme-treated yolk-contaminated egg whites were also tested in angel food cakes. Enzyme-treated, yolk-contaminated egg whites performed similarly to non-yolk-contaminated control, and much better than yolk-contaminated sample in angel food cakes. The results show that most negative effects of yolk contamination can be reversed by treatment with Mucor miehei lipase and colipase.  相似文献   

3.
研究了在80℃干热条件下焦磷酸钠改性大豆蛋白的乳化和起泡性质。研究发现:改性大豆蛋白的乳化性质和起泡性质得到明显的改善,蛋白质结合磷的量随干热处理时间的延长而增加。在干热处理前对大豆蛋白进行适度的预热处理大大提高了蛋白质结合磷的量,80℃预热处理10min使改性大豆蛋白表现出最好的乳化性质,而预热处理20min的改性蛋白质却表现出最好的起泡性质。红外光谱分析发现,焦磷酸钠以磷酸根的形式与蛋白质分子的游离羟基缩合。SDS-凝胶电泳表明,焦磷酸钠能抑制干热处理时大豆蛋白各亚基之间的聚合作用,从而提高其功能性质。该研究为大豆蛋白的改性提供了新的思路。  相似文献   

4.
Modified Soy Proteins with Improved Foaming and Water Hydration Properties   总被引:8,自引:0,他引:8  
Soy proteins were modified by alkali treatment at pH 10.0, followed by papain hydrolysis. Solubility, water hydration capacity (WHC), surface hydrophobicity, foaming and emulsifying properties of unmodified, alkali-treated, and papain-modified soy protein (PMSP) were compared. PMSP exhibited higher solubility (100% at pH > 7.0), WHC (3.13) and hydrophobicity (40.8) than unmodified soy protein which had solubility 68.5%, WHC 0.21, and hydrophobicity 8.1. The PMSP had foaming capacity (22.0 mL) similar to egg white (21.2 mL) at pH 7.0; and enhanced foam stability (36.4) compared to the unmodified control (32.9). In general, alkali-treated soy had lower functional properties. Emulsifying properties of PMSP and alkali treated soy were unchanged by the modification. PMSP could be used as an egg white substitute in foaming applications at neutral pH.  相似文献   

5.
采用动态超高压微射流均质机对大豆分离蛋白进行处理,研究了不同的压力对大豆分离蛋白起泡性、凝胶性的影响.结果表明动态超高压微射流处理能使大豆分离蛋白的起泡性、凝胶性得到改善,随着均质压力的逐渐增加,都有不同程度的提高,100ml的6%大豆分离蛋白经高速分散搅打后,泡沫高度可以达到180ml,16%的大豆分离蛋白凝胶强度可以达到0.08355kg.  相似文献   

6.
Delipidated egg yolk protein (EYP) is produced as a co-product of egg yolk lecithin extraction. This EYP is expected to have poor functionality because of protein denaturation caused by ethanol treatment during lecithin extraction. Two food grade endo-proteases were used to produce EYP hydrolysates (EYPh) with two degrees of hydrolysis (DH), 3% and 6%. Protein solubility was improved as DH increased. Solubility profiles for both EYP and EYPh were relatively less pH-dependent compared with soy protein. Except for foaming capacity, EYPh showed improvement in foam stability, foaming speed, and foam density. Emulsion stability was improved for all EYPhs. Treatments at DH of 6% showed significant increase in emulsification capacity. We have shown quantitatively how controlled enzymatic hydrolysis can be applied to ethanol-treated lipid-free EYP to increase protein solubility, and thus to improve foaming and emulsification properties.  相似文献   

7.
为了提高大豆分离蛋白(SPI)的起泡性,对SPI经alcalase有限水解产物中不同分子大小的肽段采用谷氨酰胺转移酶TGase进行交联。结果表明:TGase交联可有效提高SPI的起泡性,特别是显著地提高了其泡沫稳定性;MW﹥10 ku的大分子肽当加酶量为15 U/g底物且交联4 h时得到最佳的泡沫稳定性为88.5%;MW﹥10ku和MW﹤5 ku的大分子和小分子肽混合物当加酶量为50U/g(底物),交联时间为4 h、大分子与小分子肽摩尔比为1∶1时得到的最佳泡沫稳定性为60.3%;MW>10 ku的大分子肽交联产物的分子质量显著高于MW>10ku的大分子肽和MW<5 ku的小分子肽(摩尔比1∶1)交联产物的分子质量。  相似文献   

8.
为了了解高压均质技术对大豆分离蛋白(SPI)功能性质的影响,采用不同的均质压力、均质次数和料液比对大豆分离蛋白溶液进行了高压均质处理,并分析处理前后SPI功能性质的变化.结果表明:高压均质可在一定程度上提高SPI的溶解性、乳化活性及其稳定性和起泡性及泡沫稳定性.均质压力在0~70 MPa的范围内升高时,SPI的溶解性、乳化稳定性、起泡性和泡沫稳定性得到了相应的改善,而乳化活性在压力为40 MPa时达到最高;均质次数由1次向3次增加时,SPI的乳化稳定性、起泡性及泡沫稳定性得到了提高,而溶解性和乳化活性则降低;均质物料料液比在1∶16~1∶8 (g∶mL)的范围内逐步增大时,SPI的各项功能性质均有不同程度的提高,并在料液比为1∶8时达到了最高值.  相似文献   

9.
潘明喆  李斌  孟宪军 《食品科学》2016,37(15):63-68
研究添加不同质量分数木糖醇时大豆分离蛋白的结构、溶解性、表面疏水性、内源荧光强度以及起泡特性的变化情况,以期更加深入了解木糖醇对大豆分离蛋白结构和功能特性的影响。结果表明:在木糖醇的作用下,大豆分离蛋白的溶解性增加,而表面疏水性和内源荧光强度降低,原来暴露的酪氨酸和色氨酸残基则被包裹到分子内部。同时,大豆分离蛋白的结构也发生了改变,其二级结构变得更加有序、致密。由于大豆分离蛋白结构的变化,其起泡能力受到抑制。另外,木糖醇使大豆分离蛋白溶液的表观黏度增加,有利于提高其泡沫稳定性。  相似文献   

10.
The ability of whey protein concentrates (WPC) to form highly expanded and stable foams is critical for food applications such as whipped toppings and meringue-type products. The foaming properties were studied on six experimental and three commercial WPC, manufactured by membrane fractionation processes to contain reduced lipids and calcium. Lipid-reduced WPC had excellent foaming properties. Experimental delipidized WPC MF 0.45 and commercial delipidized WPC E had higher (P < 0.05) foam expansion than egg white protein (EWP). However. WPC B made bv low-pH UF and isoelectric orecinitation did not form a foam. Lipids and ash were the main factors affecting foaming properties.  相似文献   

11.
The technique of foaming has proved effective in creating a porous structure, which is an important requirement for crisp food. Foam density and the type of foaming agent indeed play a key role in determining the drying kinetics and textural property of the foamed food. The influences of the foam density and the types of foaming agents on the moisture diffusivity as well as the quality in terms of microstructure, texture and volatile losses of banana foams were therefore investigated. Three foaming agents, i.e., fresh egg albumen (EA), soy protein isolate (SPI) and whey protein concentrate (WPC) were used. The experimental results showed that WPC banana foam could retain more open structure during drying. This morphology provided less shrinkage and led to higher values of the effective diffusivity as compared with that of SPI and EA banana foams. In terms of the textural properties, WPC and EA banana foams were spongy and less crisp than SPI banana foam. Samples with lower foam densities exhibited higher values of the effective diffusivity, smaller hardness and lower crispness than those with higher foam densities. The losses of volatile substances were substantial during all processing steps, but the major losses were during the foaming step.  相似文献   

12.
All blood plasma proteins denatured at lower temperatures than the major protein of egg white (ovalbumin). γ-Globulin was the most heat-stable, and fibrinogen was the most heat-sensitive protein of blood plasma. The plasma had similar foaming capacity as egg white, but foam stability of plasma was less. Among plasma fractions, serum albumin, fibrinogen, and α-globulin had good foaming capacities and stabilities. Globulins were the only protein fraction of egg white with good foaming properties. Blood plasma and its component proteins were better emulsifiers than egg white and its component proteins.  相似文献   

13.
To improve the foaming properties of egg white powder (EWP), the effects of incorporating four different kinds of peptides (soy peptides, corn peptides, whey peptides, and fish skin peptides) were evaluated. The addition of soy peptides (SP) enhanced the foamability, foam stability, and solubility of EWP, whereas whey peptides (WP) significantly reduced the foam stability and solubility. Adding corn peptides (CP) and fish skin peptides (FP) notably improved the foaming properties but had no significant effect on solubility. The addition of SP, WP, and CP markedly reduced zeta potential and surface tension and increased surface hydrophobicity. The rheology data showed that adding SP, CP, and FP significantly increased the elastic modulus of the foam, yet WP notably reduced the elastic modulus. The results obtained by Fourier infrared spectroscopy indicated that the addition of the four kinds of peptides made the secondary structure of egg white protein more flexible. In short, SP, CP, and FP could improve the foaming performance of EWP.  相似文献   

14.
温度对于大豆分离蛋白起泡性的影响研究   总被引:3,自引:1,他引:2  
研究了20~90℃下商业用大豆分离蛋白(SPI)的起泡性。随着溶解温度的升高,5%大豆分离蛋白的溶解性及疏水性逐渐提高,起泡能力逐渐增强,泡沫稳定性则逐渐下降;将不同温度下5%大豆分离蛋白中的可溶性蛋白采用离心方法分离后发现可溶性蛋白的起泡性表现出与5%大豆分离蛋白相反的趋势,尤其在20~40℃的溶解温度下可溶性蛋白的起泡性远远优于大豆分离蛋白的起泡性。研究结果也说明,溶液中高比例可溶性大豆蛋白的存在可能有利于蛋白质泡沫的形成,但不能对泡沫的稳定性起到良好的支撑作用,同时大豆蛋白在溶液中的构象也会影响其起泡性。  相似文献   

15.
The effects of three varieties of instant green tea (from China, Japan and Kenya) on the foaming and thermal properties of 1% (w/v) egg albumen and the gelation properties of 5 and 15% (w/v) egg albumen were investigated. All varieties produced similar effects on the foaming and gelation properties of egg albumen, but to different extents depending on the tea constituents. Mixtures of 1% (w/v) egg albumen and 0.25–0.4% (w/v) instant green teas in distilled water showed the greatest foam expansion (800–1140%) and foam stability (97–100%) at 10 min after whipping compared with 1% (w/v) egg albumen alone (226% for foam expansion and 34% for foam stability). Addition of instant green teas at levels above 0.5% (w/v) decreased foam expansion and stability. Small‐deformation rheology of mixtures of 5% (w/v) egg albumen and 1 or 2% (w/v) instant green teas showed an initial increase in elastic modulus (G′) and viscous modulus (G″) followed by a small, broad peak, indicating that the binding of tea constituents (polyphenols) with proteins may be reversible between 20 and 54 °C; this peak was not seen for 5% (w/v) egg albumen on its own. Large‐deformation rheological tests also indicated increased strength of mixed egg albumen/green tea gels with increasing levels of instant green teas. Differential scanning calorimetry thermograms showed that for the same instant green tea a higher concentration decreased the onset and peak (Tm) temperatures and enthalpy change values of all egg albumen protein peaks. Copyright © 2007 Society of Chemical Industry  相似文献   

16.
为探讨β-巯基乙醇对大豆分离蛋白热致聚合物界面性质的影响,以大豆分离蛋白为原料,在pH7.0、90 ℃加热添加和不添加β-巯基乙醇(2 mmol/L)浓度为10 mg/mL的大豆分离蛋白溶液0 h和10 h,制备不同大豆分离蛋白质热致聚合物。观察了大豆分离蛋白、添加β-巯基乙醇大豆分离蛋白、大豆分离蛋白热致聚合物和β-巯基乙醇大豆分离蛋白热致聚合物的微观形态、游离巯基含量的变化,同时比较了起泡能力、泡沫稳定性、乳化活性、乳化稳定性、表面疏水性和浊度的差异。结果表明,大豆分离蛋白和添加β-巯基乙醇大豆分离蛋白呈现无规则状态,大豆分离蛋白热致聚合物为有规则的球状颗粒,而β-巯基乙醇大豆分离蛋白热致聚合物部分形成球状聚合物部分形成无规则聚合物。添加β-巯基乙醇改善了大豆分离蛋白的界面性质。与大豆分离蛋白相比较,添加β-巯基乙醇大豆分离蛋白和添加β-巯基乙醇大豆分离蛋白热致聚合物的起泡能力分别提高了64.56%和95.77%,乳化活性提高的幅度分别为12.94%和14.61%。添加β-巯基乙醇大豆分离蛋白和添加β-巯基乙醇大豆分离蛋白热致聚合物在长时间储藏中表现出良好的乳化稳定性和泡沫稳定性。这种良好的界面性质源于β-巯基乙醇的加入赋予聚合物具有更高的游离巯基含量和表面疏水性。并且本实验建立了4种样品的泡沫稳定性和乳化稳定性随时间变化的Rational函数和Linear函数经验模型,为大豆分离蛋白质的实际应用奠定了理论基础。  相似文献   

17.
G. Wang    T. Wang 《Journal of food science》2009,74(2):C147-C156
ABSTRACT:  A series of experiments were conducted to evaluate effects of yolk contamination, shearing, and thermal treatment on foaming properties of liquid egg white. Samples obtained from industrial processing were also evaluated. Whipping and purging methods were both used to assess their effectiveness and sensitivity in evaluating foaming. A concentration as low as 0.022% (as-is basis) of yolk contamination caused significant reductions in foaming capacity and foaming speed. The neutral lipid fraction of egg yolk caused the major detrimental effect on foaming, and phospholipids fraction did not give significant foaming reduction at a concentration as high as 0.1%. High-speed and short-time shearing caused no apparent damage but longer shearing time significantly impaired foaming. Heat-induced foaming change is a function of temperature and holding time. Foaming was significantly reduced at a temperature of 55 °C for 10 min, whereas it did not change up to 3 min at a heating temperature of 62 to 64 °C. Industrial processing steps (pumping, pipe transfer, and storage) did not produce negative effects on foaming of the final products and the controlled pasteurization was actually beneficial for good foaming performance. Therefore, yolk contamination of the egg white was the major factor in reducing foaming properties of the white protein.  相似文献   

18.
ABSTRACT: The foaming properties of egg albumen, which had been subjected to low and high pH unfolding followed by refolding, were investigated. The foaming capacity of egg albumen, the stability of the foam, or both, could be improved by an unfolding and refolding regime by choosing proper unfolding and refolding pH values. The foaming capacities of egg albumen were greatly improved when the refolding was at pH 6.5, 7.5, or 8.5, whereas the foaming capacities could be either slightly increased or decreased when the refolding was at pH 4.5 or 5.5 compared with the controls. The foam stability was in almost all cases improved by the unfolding and refolding treatments except for a few cases of unfolding at pH 1.5 or 10.5. The foam stability and liquid drainage were improved most when the unfolding was at pH 12.5. Analysis of total and surface sulfhydryl groups, surface hydrophobicity, and protein analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) provided strong evidence that the partial unfolding of egg albumen proteins as well as the interactions among egg albumen proteins through disulfide and/or hydrophobic groups dictated the improvements in foaming properties. The increase in surface hydrophobicity showed better correlation with the improvement of foaming properties than the change of surface sulfhydryl content did.  相似文献   

19.
研究脉冲式超声处理对蛋清液拉曼光谱、内源性荧光光谱、静态流变学性质、粒径和理化结构的影响,结合起泡性的变化进行相关性分析。研究发现,超声处理能够改变蛋清蛋白二硫键构象,降低蛋清液黏度,减少总巯基含量,对无规卷曲、β-转角含量和酪氨酸残基峰强比(I850/I830)影响较小,蛋清液依旧为假塑性流体。在超声处理15 min内,蛋清蛋白质粒径、表面巯基含量、热变性焓(ΔH)、α-螺旋和β-折叠含量逐渐减少,内源性荧光强度和表面疏水性逐渐增强,色氨酸残基趋向于“暴露的”展开形式;起泡性得到改善,且泡沫体积小,呈均匀紧密的排列,泡沫稳定性小幅降低。随着超声时间的延长,β-折叠含量继续降低,粒径、表面巯基含量、ΔH、α-螺旋含量、色氨酸残基峰强比(I1 363/I1 338)、内源性荧光强度和表面疏水性呈现不同的变化趋势,起泡性逐渐降低,但泡沫稳定性有所升高。相关性分析表明,起泡性与I1 363/I1 338、表面疏水性呈正相关,与ΔH、平均粒径、α-螺旋含量和表面巯基含量呈负相关,泡沫稳定性与表面疏水性呈负相关。  相似文献   

20.
Effects of peptides and nonprotein components of whey on whey protein isolate (WPI) were studied using a differential pressure method. Decay of WPI foam followed biphasic first-order kinetics, but was affected by solution conditions. WPI foam stability exhibited two pH optima (5.0 and 8.5). Addition of 0.02–0.15M NaCl progressively decreased foaming capacity and foam stability. Addition of 0.01–0.2% proteose-peptones caused a sharp decrease in foam stability, but did not affect WPI foaming capacity. Foam stability was increased by addition of up to 20% lactose. Removal of proteose-peptones should greatly improve foaming properties of whey proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号