首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A docosahexaenoic acid (DHA), 22:6(n-3), rich strain of Schizochytrium sp. was used in a spray-dried form to evaluate the enhancement of highly unsaturated fatty acids (HUFAs) in Artemia franciscana nauplii (Utah biotype) and the rotifer Brachionus plicatilis . This heterotrophic microalga was selected because of its high concentration of the longest chain HUFAs in the n-3 and n-6 series, DHA and docosapentaenoic acid (DPA), 22:5(n-6), respectively. When 24-h-old Artemia nauplii were fed 400 mg/L of the algae for 24 h, the DHA content of the nauplii went from undetectable levels to 0.8% of dry weight and the omega-3 HUFA eicosapentaenoic acid (EPA), 20:5n-3, content went from 0.1% to 0.5% of dry weight in the nauplii. Similarly, 22:5(n-6) increased in the nauplii from undetectable levels to 0.4% of dry weight, with a concomitant increase in arachidonic acid, (20:4n-6), from trace to 0.3% of dry weight even though there was no arachidonic acid in the algal biomass. Similar enrichment patterns were observed in rotifers. The results suggest that spray-dried cells of Schizochytrium sp. are effective in enriching Artemia naupli and rotifers in both n-3 and n-6 HUFAs. The results also suggest that Artemia nauplii and rotifers are capable of readily retroconverting 22:6(n-3) to 20:5(n-3) and 22:5(n-6) to 20:4(n-6) through the process of β-oxidation, a well-known process in mammals.  相似文献   

2.
The effect of varying levels of dietary n-3 highly unsaturated fatty acid (HUFA) and docosahexaenoic acid/eicosapentaenoic acid (DHA/EPA) ratios on growth, survival and osmotic stress tolerance of Eriocheir sinensis zoea larvae was studied in two separate experiments. In experiment I, larvae were fed rotifers and Artemia enriched with ICES emulsions with 0, 30 and 50% total n-3 HUFA levels but with the same DHA/EPA ratio of 0.6. In experiment II, larvae were fed different combinations of enriched rotifers and Artemia, in which, rotifers were enriched with emulsions containing 30% total n-3 HUFA, but different DHA/EPA ratio of 0.6, 2 and 4; while Artemia were enriched with the same emulsions, but DHA/EPA ratio of 0.6 and 4. In both experiments, un-enriched rotifers cultured on baker's yeast and newly-hatched Artemia nauplii were used as control diets. Larvae were fed rotifers at zoea 1 and zoea 2 stages; upon reaching zoea 3 stage, Artemia was introduced.Experiment I revealed no significant effect of prey enrichment on the survival of megalopa among treatments, but higher total n-3 HUFA levels significantly enhanced larval development (larval stage index, LSI) and resulted in higher individual dry body weight of megalopa. Furthermore higher dietary n-3 HUFA levels also resulted in better tolerance to salinity stress. Experiment II indicated that at the same total n-3 HUFA level, larvae continuously receiving a low dietary DHA/EPA ratio had significantly lower survival at the megalopa stage and inferior individual body weight at the megalopa stage, but no negative effect was observed on larval development (LSI). The ability to endure salinity stress of zoea 3, zoea 5 and megalopa fed diets with higher DHA/EPA ratio was also improved.  相似文献   

3.
Abstract— Two bacterial strains, rich in either eicosapentaenoic acid [EPA, 20:5(n-3)] ( Shewanella gel-idimarina ACAM 456) or docosahexaenoic acid [DHA, 22:6(n-3)] ( Colwellia psychroeryrhrus ACAM 605) were tested for their ability to enrich rotifers Erachionus plicatilis in these polyunsaturated fatty acids. Rotifers were exposed for 24 h to each bacterial strain and to a mixture of the two strains. They were then harvested and their fatty acid compositions were analysed and compared to those of rotifers that had been either starved or fed yeast Saccharomyces cerevisiae or microalgae Tetraselmis suecica in 2-L glass flasks. Exposure to 1.4 × 109 cells/ml of the EPA-producing bacterium only resulted in rotifer EPA levels increasing from 0.1% to 1.2% of total dry weight (%dw). Similarly, following exposure to 1.0 × 109 cells/mL of the DHA-producing bacterium only, rotifer DHA levels increased from below detection to 0.1% dw. When exposed to a mixture of the two bacterial strains, containing 7.0 × 108 celldml of the EPA producer and 5.0 × 108 cells/mL of the DHA producer, the rotifers'final EPA and DHA levels were 0.5% dw and 0.3% dw respectively. Although feeding strategies need refining, these results show, for the first time, that rotifers can be enriched with DHA from bacteria, and that rotifers can be enriched simultaneously with both DHA and EPA from different bacterial strains.  相似文献   

4.
The palm ruff, Seriolella violacea (Cojinoba), is a potential new species for Chilean aquaculture. To approach Cojinoba larviculture, an experimental Artemia enrichment emulsion, containing docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) = 2.5, supplemented with vitamin E, astaxanthin, and β‐glucan, was evaluated in both Artemia and Cojinoba larvae, 30–50 d.a.h. This study tested an experimental enrichment emulsion versus a commercial emulsion, with an integral approach of multicompound emulsions. After 23 h enrichment, experimental emulsion (EE)‐enriched nauplii reached DHA and EPA concentrations of 23.8 and 18.7 mg/g dry weight (dwt), respectively, while in Cojinoba larvae they were 18.4 and 19.7 mg/g dwt. Control emulsion (CE)‐enriched nauplii exhibited lower DHA and EPA (6.1 and 7.7 mg/g dwt), while only DHA decreased in the control larvae (12.6 mg/g dwt). Vitamin E was higher in EE‐enriched nauplii (29.2 mg/100 g dwt) than in the control (8.4 mg/100 g dwt). Larvae fed EE‐enriched Artemia exhibited 8% increase in survival and 19% in growth compared with the control. Astaxanthin was detected only in larvae fed EE‐enriched nauplii. The tumor necrosis factor‐α concentration was not significantly different between larvae fed EE‐ and CE‐enriched nauplii. EE looks promising as an Artemia enrichment and experimental diet to assess palm ruff larval requirements, and has a positive impact on fish larvae performance.  相似文献   

5.
Three experiments were carried out to test the effects of enrichment of live food (rotifers) with varying levels of n-3 highly unsaturated fatty acids (HUFA) on the growth rate and fatty acid composition of red drum larvae. Additionally, the fatty acid compositions of red drum eggs and day-1 larvae were compared. The enrichment techniques were successful in that the levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were elevated in the rotifers fed the enrichment diet. Red drum larvae fed the control rotifers produced the highest growth rate of the three experiments. Larvae fed rotifers with no HUFA supplement (NHUFA) had a significantly lower growth rate than the controls for that experiment. The fatty acid compositions of the eggs and day-1 larvae did not vary significantly and contained high levels of 16:0, 16:1 n-7 and DHA (22:6 n-3). Based on these data, the lack of DHA in the diet significantly reduced the growth rates of larval red drum. The 10-day-old red drum larvae had similar fatty acid profiles at the end of the experiments regardless of the diet they were fed, indicating that dietary inputs have little effect on the fatty acid composition of larvae during the first ten days of growth. Red drum larvae appear to have the ability, though limited, to bioconvert EPA to DHA since there was a significant increase in the levels of DHA from day 1 to day 10 in the NHUFA larvae. However, the efficiency of this bioconversion is not sufficient for optimal growth and supplemental DHA at least to the level found in the control rotifers (0.3–0.4mg/100mg tissue) is necessary to maximize growth. The exact role of EPA could not be determined from this study due to the inability to produce an EPA-free rotifer.  相似文献   

6.
闽东海域银鲳亲鱼性腺发育后期脂类及脂肪酸蓄积特点   总被引:1,自引:0,他引:1  
脂肪和脂肪酸是海水鱼类早期生长发育的重要结构物质和能量来源。亲鱼的脂肪和脂肪酸储备影响其繁殖性能和早期仔鱼的发育。为了获知银鲳亲鱼性腺发育后期脂类及脂肪酸蓄积特点,本研究采用氯仿甲醇法及气相色谱法定量检测了繁殖季节闽东海域野生银鲳亲鱼不同组织的总脂肪及脂肪酸含量。结果表明:亲鱼卵巢、精巢、肝脏和肌肉的总脂肪含量差异显著。卵巢、精巢、肝脏和肌肉的总脂含量分别为:35.76%,15.11%,22.07%和22.14%(占组织干重)。极性脂肪占总脂肪的比例在精巢中最高,其次为肝脏和卵巢,在肌肉中最低。性腺从Ⅳ期发育到Ⅴ期,雌鱼卵巢总脂肪和中性脂肪含量显著增加,雄鱼肌肉极性脂肪含量显著降低。中性脂肪中卵巢的20∶5n-3(EPA,2.25~3.87 mg/g)、22∶6n-3(DHA,6.71~13.03mg/g)和高不饱和脂肪酸(HUFAs,17.20~29.64 mg/g)含量最高,极性脂肪中精巢的EPA(0.38~0.27 mg/g)和DHA(3.12~3.59 mg/g)含量最高。性腺中n-3/n-6比值显著高于肝脏和肌肉中。随着卵巢发育,DHA等必需脂肪酸在雌鱼不同组织及同一组织不同脂肪类别之间存在转移现象。研究表明,银鲳亲鱼各组织的总脂肪含量、总脂肪组成及脂肪酸绝对含量(mg/g干物质)具有组织特异性,随着性腺发育,必需脂肪酸总体上表现为由肌肉和肝脏向性腺中转移,且性腺中脂肪酸的变化主要发生在中性脂肪中。  相似文献   

7.
The effect of dietary 22:6n-3 (docosahexaenoic acid, DHA) on growth and survival was determined in striped trumpeter during metamorphosis and the Artemia-feeding period (16–36 days posthatch, dph). Artemia were enriched on one of five experimental emulsions that contained graduated concentrations of DHA and constant 20:4n-6 (arachidonic acid, ARA). We also compared larval performance using a commercial enrichment product high in n-3 PUFA. Final DHA concentrations in Artemia enriched on the experimental emulsions ranged from 0.1–20.8 mg/g DM, while Artemia fed the commercial product had 18.2 mg DHA/g DM. Each of the six diets was fed to larvae in four replicate 300-l tanks. Standard length (range 10.0–11.2 mm) and dry weight (range 1.6–2.5 mg) of larvae at the end of the experiment were directly related to dietary DHA, with the highest growth recorded in the experimental diet with the greatest concentration of DHA (20.8 mg/g DM). Survival at 36 dph was not influenced by dietary DHA and ranged from 20–44%. Mortality increased noticeably, regardless of dietary treatment, when larvae attained a standard length of approximately 9.5 mm. Mortality was related to a nocturnal behaviour where larvae would migrate to the tank bottom during the dark phase. Fatty acid profiles of the larvae were generally correlated to dietary fatty acids. Dietary DHA was found to be important in larval striped trumpeter growth, where enhanced growth probably shortened the critical period of metamorphosis and the window where nocturnal downward migration and mortality occurred.  相似文献   

8.
This study aimed to evaluate the effect of enriching Artemia nauplii with vitamin C (ascorbyl-6 palmitate) or vitamin E (α-tocopherol acetate), 20% w/w, together with a mixture of concentrated eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3) on the growth, survival, and stress resistance of fresh water walleye Stizostedion vitreum larvae. Either cod liver oil (CLO) or EPA/DHA ethyl esters concentrate was used as lipid sources in the Artemia enrichment. Walleye larvae were fed ad libitum for 40 days. At day 40, submersion in salt water (25 g L−1) was performed to evaluate larvae resistance to stress. EPA and DHA levels in walleye juveniles fed EPA/DHA-enriched Artemia increased significantly, by an average of 650% compared with fish fed non-enriched Artemia . A significant increase was found for vitamins C (71.8 ± 1.0 and 42.7 ± 1.2 μg g−1 wet weight (WW)) and E (17.0 ± 3.7 and 6.5 ± 0.9 μg g−1WW) concentrations in fish fed enriched and unenriched Artemia , respectively. Growth was comparable throughout treatments, whereas survival was significantly higher in fish fed CLO-enriched Artemia nauplii compared with fish fed Artemia nauplii enriched with EPA/DHA concentrate. The addition of vitamin C increased fish survival by 1.4-fold compared with fish fed Artemia enriched with only EPA/DHA concentrate. The survival of the latter was similar to control fish ( Artemia without enrichment). The supplementation of vitamin E did not affect fish survival significantly. Stress tests revealed that the resistance of walleye larvae to salinity changes increased when Artemia enrichment was supplemented with vitamin C. However, walleye larvae fed CLO-enriched Artemia had the best performances in the stress test.  相似文献   

9.
Oil-seawater emulsions of 12%, 8%, 4% and 2% soya phosphatidylcholine (PC) in tuna orbital oil (TOO) (w:w) were tested with respect to their suitability as Artemia enrichment media. Levels of essential fatty acids (EFA) accumulated by feeding Artemia nauplii were measured after enrichment periods of 0, 14, 18 and 20 h, and the stability of polyunsaturated fatty acids levels in the emulsions were also monitored throughout the enrichment process. Artemia enrichment efficiency in terms of %DHA (docosahexaenoic acid, 22:6w-3) and DHA:EPA (eicosapentaenoic acid, 20:5w-3) ratios were similar for all four types of emulsions (10-12% and 1.7-1.8, respectively). However, 8% and 12% soya PC/TOO emulsions yielded nauplii with slightly higher mean lipid contents than the other two treatments (235-243 and 217-229 mg lipid g-1 dry body weight, respectively). Stability of polyunsaturated fatty acids (PUFA) levels within the emulsions in seawater, and of DHA and EPA levels in particular, correlated with soya PC concentration. In 12% soya PC/TOO emulsions, PUFA levels remained high after 20 h enrichment whilst those in the 2% and 4% soya PC emulsions showed a marked reduction by 18 h enrichment time. It is suggested that soya PC may protect PUFA levels in the emulsions in a dose-dependent manner, probably by acting as an antioxidant. No significant improvement in Artemia total lipid content or DHA:EPA ratio occurred when enrichment was continued for longer than 18 h. When using this enrichment system, it is preferable, therefore, to employ the 12% soya PC/TOO emulsion and to terminate the enrichment process at 18 h, thus preventing the risk of PUFA levels deteriorating in the emulsion.  相似文献   

10.
Five purified diets containing AA (20:4n-6) at 0.02–0.78% dry weight and DHA (22:6n-3) at 0.93–0.17% dry weight were fed to duplicate groups of juvenile turbot (Scophthalmus maximus) of initial weight 0.87 g for a period of 11 weeks. The dietary DHA:AA ratio ranged from 62 to 0.2. Incorporation of AA into liver phospholipids increased with increasing dietary AA input. Phospholipids from fish fed diets containing 0.02, 0.06 and 0.11% of dry weight as AA generally contained less AA compared to fish fed fish oil while those fed diets containing 0.35 and 0.78% of dry weight as AA had higher AA levels in their phospholipids. The highest levels of AA were found in PI but the greatest percentage increase in AA incorporation was in PE and PC. Brain phospholipid fatty acid compositions were less altered by dietary treatment than those of liver but DHA content of PC and PE in brain was substantially lower in fish fed 0.93% pure DHA compared to those fed fish oil. This suggests that dietary DHA must exceed 1% of dry weight to satisfy the requirements of the developing neural system in juvenile turbot. In both tissues, (20:5n-3) concentration was inversely related to both dietary and tissue PI AA concentration. Similar dietary induced changes in AA, EPA and DHA concentrations occurred in the phospholipids of heart, gill and kidney. PGE2 and 6-ketoPGF1 were measured in homogenates of heart, brain, gill and kidney. In general, fish fed the lowest dietary AA levels had reduced levels of prostaglandins in their tissue homogenates while those fed the highest level of AA had increased prostaglandin levels, compared to fish fed fish oil. In brains, the PGE2 concentration was only significantly increased in fish fed the highest dietary AA.Abbreviations AA arachidonic acid - DHA docosahexaenoic acid - EFA essential fatty acid - EPA eicosapentaenoic acid - HPTLC high performance thin-layer chromatography - HUFA highly unsaturated fatty acid - PC phosphatidylcholine - PE phosphatidylethanolamine - PGE prostaglandin E - PGE prostaglandin E - PI phosphatidylinositol - PS phosphatidylserine - PUFA polyunsaturated fatty acid - TLC thin-layer chromatography  相似文献   

11.
European sea bass juveniles (14.4±0.1 g mean weight) were fed diets containing different levels of fish oil then of n-3 highly unsaturated fatty acids (n-3 HUFA) for 12 weeks. The fish performance as well as fatty acid (FA) composition of neutral and polar lipids from whole body after 7 and 12 weeks feeding were studied. The requirements of juvenile sea bass for n-3 highly unsaturated fatty acids (n-3 HUFA) were studied by feeding fish diets containing six different levels of n-3 HUFA ranging from 0.2% to 1.9% of the diet, with approximately the same DHA/EPA ratio (1.5:1).

The growth rate at the end of the trial showed significant differences. Fish fed low dietary n-3 HUFA (0.2% DM of the diet) showed significantly lower growth than the diet 3 (0.7%), then no further improvement (P>0.05) of growth performance was seen by elevating the n-3 HUFA level in the diet up to 1.9% (diet 6). No difference in feed efficiency, protein efficiency ratio or protein retention was observed among treatments, nor in protein and total lipid content. However, the n-3 HUFA levels in diets highly influenced fish fatty acid composition in neutral lipid, while polar lipid composition was less affected. Comparison of polar lipid content after 7 or 12 weeks indicated that DHA remained stable at the requirement level, while arachidonic acid decreased with time. Results of this experiment suggest that the requirement for growth of n-3 HUFA of juvenile sea bass of 14 g weight is at least 0.7% of the dry diet.  相似文献   


12.
通过对波纹唇鱼肌肉氨基酸、脂肪酸等营养成分的测定和分析,评估和讨论其肉质的风味特征。结果表明,波纹唇鱼Cheilinus undulates的含肉率为71.5%,肌肉中粗蛋白、粗脂肪、粗灰分、水分的含量分别为18.98%、1.56%、1.23%、76.33%;测定的18种氨基酸总量为878.1mg/g(干重),4种鲜味氨基酸含量为355.3mg/g(干重),是其美味的主要因素。DHA和EPA的含量分别为2.00和9.51mg/g,DHA和EPA含量占脂肪酸总量的12.76%。  相似文献   

13.
Long-chain polyunsaturated fatty acids (LCPUFA) with 20 or 22 carbons are considered important to the development of infants and sometimes added to infant formulae. In this study, two characteristic sources of n-3 LCPUFA (fish oil and microalgal oil) were orally administrated to rat pups of mildly n-3 PUFA — deficient dams to compare the consequences of the administration. The milk from the dams fed a n-3 PUFA — restricted diet contained less n-3 LCPUFA than that of the dams fed a control diet. Pups were administered 1 mg/g weight of the test oil at the age of 5–7 days. At the age of 7 days, they were sacrificed before or after the administration and fatty acid compositions of the stomach and serum lipid were studied. The administration changed docosahexaenoic acid (DHA; 22:6n−3) levels in the stomach contents and serum lipids with time. Eicosapentaenoic acid (EPA; 20:5n−3) levels increased immediately after the administration of fish oil. The administration of microalgal oil also affected the serum lipid EPA level, in spite of a lack of EPA. In this study, both oils effectively supplemented DHA. Fish oil returned the serum EPA level close to the control value while microalgae oil had little effect.  相似文献   

14.
A feeding study was conducted in the winter 2001 to determine the effects of feeding rotifers (Brachionus plicatilis) enriched with various levels of essential fatty acids on the growth and survival of haddock larvae (Melanogrammus aeglefinus). Rotifer enrichment treatments were: 1) mixed algae, 2) high DHA (docosahexaenoic acid, 22:6n-3), 3) high DHA and EPA (eicosapentaenoic acid, 20:5n-3), and 4) DHA, EPA, and AA (arachidonic acid, 20:4n-6). Larvae were fed rotifers enriched with the different treatments from days 1 to 16 post-hatch. From day 17 until 25 all treatment groups were fed rotifers reared on mixed algae and then weaned onto the International Council for Exploration of the SEA (ICES) Standard Reference Weaning diet (http://allserv.rug.ac.t/aquaculture/rend/rend.htm) over a five day period. The experiment was terminated on day 41 post-hatch. The enrichment treatments affected the fatty acid composition of the rotifers and correlated with the accumulation of these fatty acids in the haddock larvae. However, no significant differences in larval growth or survival to 40 days post hatch were detected, suggesting that all treatments provided the minimal essential fatty acid requirements for haddock.  相似文献   

15.
为研究饲料DHA/EPA值对星斑川鲽幼鱼生长、体组成和血液生理指标的影响,实验配制等氮、等能的5种不同DHA/EPA值(0.64、0.97、1.18、1.59和1.91)的饲料,每个比值设3个重复,饲养周期56 d。结果显示:(1)随着饲料DHA/EPA值的升高,星斑川鲽幼鱼增重率、饲料效率、蛋白质效率均呈先上升后下降的趋势(P0.05)。当饲料DHA/EPA值为0.97~1.59时实验鱼增重最快,饲料效率最高。蛋白质效率则在DHA/EPA值为0.97~1.18时达到最高。蛋白质沉积率(protein retention efficiency,PRE)与饲料DHA/EPA值呈显著二次回归关系(y=-1.589 5x2+2.858 3x+45.184;R2=0.910 8,x=饲料DHA/EPA值,y=PRE),当饲料DHA/EPA值大于0.90时呈下降趋势。肝体比呈先下降后小幅回升的趋势(P0.05),在饲料DHA/EPA值为1.18时达到最低,为2.85%,脾脏指数呈显著上升趋势(P0.05),于饲料DHA/EPA值为1.59组最高(0.12%);(2)肝脏粗脂肪含量随饲料DHA/EPA值的增加呈明显下降趋势(P0.05),且在饲料DHA/EPA值为1.18时降到最低,为8.60%,而后又显著上升,但仍显著低于饲料DHA/EPA值为0.64时的水平(13.44%)。二次回归分析(y=5.199 6x2-15.652x+20.866;R2=0.634 8,x=饲料DHA/EPA值,y=肝脏脂肪含量)显示,当饲料中DHA/EPA值为1.51时肝脏脂肪含量最低。脂肪酸分析结果显示,随着饲料DHA/EPA值的升高,肝脏及肌肉中EPA含量均呈线性下降趋势(P0.05),而DHA含量及DHA/EPA均呈直线上升趋势(P0.05)。肝脏和肌肉组织n-3 HUFA总量不受饲料处理的影响(P0.05);(3)血清总蛋白、球蛋白含量在饲料DHA/EPA值为1.59时显著高于其他各组(P0.05),白蛋白在饲料DHA/EPA值为0.64、0.97和1.59水平最高。溶菌酶(LSZ)活性在饲料DHA/EPA值为1.18时达到峰值(P0.05),为2.76μg/mL。谷丙转氨酶(ALT)活性在饲料DHA/EPA值1.91时无显著变化,而当饲料DHA/EPA1.18时,血清谷草转氨酶(AST)活性提高了65%左右。研究表明,在本实验条件下,以增重率为参考指标,采用二次回归(y=-31.066x2+77.26x+76.541;R2=0.957 4,x=饲料DHA/EPA值,y=增重率)分析可得,当饲料脂肪水平为8.3%,n-3 HUFA含量为0.74%时,星斑川鲽幼鱼[初始体质量(31.70±0.12)g]对DHA/EPA值的最适需要量应为1.24。  相似文献   

16.
A study with varying dietary inclusion levels (1, 5, 10, 15 and 20 g kg?1) of docosahexaenoic acid (DHA; 22:6n-3) was conducted with post-smolt (111 ± 2.6 g; mean ± S.) Atlantic salmon (Salmo salar) over a 9-week period. In addition to the series of DHA inclusion levels, the study included further diets that had DHA at 10 g kg?1 in combination with either eicosapentaenoic acid (EPA; 20:5n-3) or arachidonic acid (ARA; 20:4n-6), both also included at 10 g kg?1. An additional treatment with both EPA and DHA included at 5 g kg?1 (total of 10 g kg?1 long-chain polyunsaturated fatty acids, LC-PUFA) was also included. After a 9-week feeding period, fish were weighed, and carcass, blood and tissue samples collected. A minor improvement in growth was seen with increasing inclusion of DHA. However, the addition of EPA further improved growth response while addition of ARA had no effect on growth. As with most lipid studies, the fatty acid composition of the whole body lipids generally reflected that of the diets. However, there were notable exceptions to this, and these implicate some interactions among the different LC-PUFA in terms of the fatty acid biochemistry in this species. At very low inclusion levels, DHA retention was substantially higher (~250 %) than that at all other inclusion levels (31–58 %). The inclusion of EPA in the diet also had a positive effect on the retention efficiency of DHA. However, EPA retention was highly variable and at low DHA inclusion levels there was a net loss of EPA as this fatty acid was most likely elongated to produce DHA, consistent with increased DHA retention with additional EPA in the diet. Retention of DPA (22:5n-3) was high at low levels of DHA, but diminished with increasing DHA inclusion, similar to that seen with DHA retention. The addition of EPA to the diet resulted in a substantial increase in the efficiency of DPA retention; the inclusion of ARA had the opposite effect. Retention of ARA was unaffected by DHA inclusion, but the addition of either EPA or ARA to the diet resulted in a substantial reduction in the efficiency of ARA retention. No effects of dietary treatment were noted on the retention of either linolenic (18:3n-3) or linoleic (18:2n-6) acids. When the total n-3 LC-PUFA content of the diet was the same but consisted of either DHA alone or as a combination of EPA plus DHA, the performance effects were similar.  相似文献   

17.
虎斑乌贼受精卵卵黄营养成分分析   总被引:3,自引:3,他引:0  
本实验对虎斑乌贼受精卵卵黄的营养成分进行分析,旨在探讨其幼体的营养需求量,为其幼体配合饲料研制提供参考数据。随机选取大约800个虎斑乌贼受精卵的卵黄,采用国家标准方法测定其水分、灰分、粗蛋白质、粗脂肪、氨基酸、脂肪酸和矿物元素含量。结果表明:1)虎斑乌贼受精卵卵黄中粗蛋白质含量为76.33%(干重基础);总氨基酸(TAA)和必需氨基酸(EAA)含量分别为71.22%和32.38%(干重基础),EAA/TAA为45.46%,氨基酸中以谷氨酸(Glu)含量最高(9.97%),必需氨基酸中亮氨酸(Leu)含量最高(7.58%)。2)其粗脂肪含量12.71%(干重基础);共检出17种脂肪酸,包括8种饱和脂肪酸(SFA)、5种单不饱和脂肪酸(MUFA)和4种多不饱和脂肪酸(PUFA),SFA、MUFA和PUFA分别占脂肪酸总量的43.47%、7.54%和49.25%,其中以DHA含量最高,达32.80%,EPA含量为7.70%,DHA/EPA为4.26。3)检测出Na、K、Ca、Mg、Sr、Mn、Fe、Cu、Zn、Al和As 矿物元素,微量元素中富含Zn、Al和Fe,含量分别为 0.77、0.71和0.43 mg/kg(鲜重基础)。由此可见,卵黄具有高蛋白、低脂肪,富含n-3PUFA的特点;虎斑乌贼幼体饲料中蛋白质需求量参考值为76.33%;氨基酸需求量参考值,如赖氨酸(Lys)为5.49%,蛋氨酸(Met)为2.63%;脂肪的需求量参考值为12.71%,DHA为4.17%,EPA为0.98%;微量元素需求量参考值,如Zn为2.77 mg/kg,Cu为0.19 mg/kg(干重基础)。  相似文献   

18.
Lipid class and fatty acid (FA) analysis were conducted on newly molted, fed, and starved zoea V and megalopa of the mud crab, Scylla serrata (S. serrata). Larvae starved for 4 d showed a substantial decrease in total FA content, from 49.67 μg/mg to 13.94 μg/mg ash‐free dry weight (AFDW) at the zoea V stage, and from 38.47 μg/mg to 10.40 μg/mg AFDW at the megalopa stage. This depletion indicates that S. serrata larvae effectively utilize stored lipid reserves for energy during periods of food deprivation. Megalopa subjected to longer starvation periods, however, did not utilize lipid as the major energy source after day 4, suggesting increased reliance on protein catabolism during prolonged starvation. At both larvae stages the major FAs were 18:1n‐9, 16:0, 20:5n‐3 (eicosapentaenoic acids, EPA), 18:3n‐3 (linolenic acid, LNA), 18:0 and 22:6n‐3 (docosahexaenoic acid, DHA) and this FA profile persisted in both fed and starved larvae. The highly unsaturated fatty acids (HUFA), EPA, DHA, and arachidonic acid (20:4n‐6, AA) were not conserved in tissue during starvation, indicating that HUFA requirements might be lower for S. serrata larvae than shown for other crustaceans. Similarly, a high level of LNA in newly molted zoea V and megalopa were rapidly depleted in unfed larvae, indicating that this FA had an important role as an energy reserve. Throughout the study, FAs from the polar lipid fraction dominated larvae tissues, while FAs from the neutral lipid constituted the largest accessible energy reserve during starvation (depleted from 23.05 to 1.23 μg/mg AFDW in zoea V, and from 19.00 to 1.27 μg/mg AFDW in megalopa). The results of this study provide new insight into lipid utilization of S. serrata larvae during development, an important step toward development of formulated diets for use in mud crab hatcheries.  相似文献   

19.
Four dietary groups of juvenile Atlantic salmon, Salmo salar L., each with three replicates, were fed diets with increasing levels of docosahexaenoic acid (22:6n-3; DHA) and eicosapentaenoic acid (20:5n-3; EPA). Fatty acid composition of brain and eye was determined at the start and approximately every 3 weeks during the experimental period, and fatty acid composition of liver and fillet was determined in fish from the final sampling. Lipid class composition of brain and eye, and fatty acid composition of these lipid classes was determined at the end of the experiment. There was no effect of increasing dietary DHA content on fatty acid composition, lipid class composition or DHA levels in the lipid classes in the juvenile Atlantic salmon brain. The increasing dietary EPA content, however, was reflected in both the total fatty acid composition and in the EPA content in neutral lipids, phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI). A minor effect of the increasing dietary DHA content was found in the lipid composition of the juvenile salmon eye. Both EPA and 18:2n-6 levels in eye, however, clearly reflected the increasing and decreasing, respectively, dietary levels of these two fatty acids. The dietary EPA levels also affected the EPA levels in neutral lipids, PC, PE, PI and PS (phosphatidylserine) in the juvenile salmon eye. The results demonstrate that these dietary levels of DHA had no effect on brain lipid composition and only a minor effect on eye lipid composition. Furthermore, the dietary EPA levels significantly affected the lipid composition of both brain and eye. The fillet fatty acid composition reflected the dietary fatty acid composition, except for the DHA/EPA ratio, which was reversed in fillet compared with that in the diets. The liver fatty acid composition was also affected by the increasing dietary EPA and DHA levels.  相似文献   

20.
Four emulsions differing in lipid class composition: triacylglycerols, ethyl esters, phospholipids and wax esters were used to enrich rotifers either through short-term (ST) enrichment (24 h) or through long-term (LT) enrichment (10 days). Higher lipid levels were obtained by using the ST enrichment method. This was particularly marked in the high triacylglycerol accumulation in rotifers enriched on the phospholipid-based emulsion. Ethyl esters were effectively assimilated and incorporated into triacylglycerol by rotifers in both the ST and LT techniques. A high docosaehexanoic/eicosapentaenoic acid (DHA/EPA) ratio was obtained in the LT technique using the ethyl ester-based emulsion. However, the other emulsion treatments gave higher or equal DHA/ EPA ratios using the ST technique. Absolute phospholipid levels were independent of both dietary lipid composition and enrichment method used, whereas triacylglycerol levels depended on these parameters. During starvation the level of phospholipid, in absolute terms, decreased slightly whereas the triacylglycerol fraction decreased considerably. Rotifers enriched on the wax ester-based emulsion using the LT technique exhibited higher levels of long-chain monoenes (i.e. 20:1 and 22:1 isomers) than when the ST technique was used. This suggests that hydrolysis of the wax esters and oxidation of the liberated fatty alcohols to fatty acids occurred when the LT technique was applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号