首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Aging Liver. A review   总被引:2,自引:0,他引:2  
  相似文献   

9.
10.
11.
Angiotensin II (Ang II) induces reactive oxygen species (ROS) production by human vascular smooth muscle cells (hVSMCs). ROS have been implicated in the development of both acute stress-induced premature senescence (SIPS) and chronic replicative senescence. Global oxidative DNA damage triggers SIPS and telomere DNA damage accelerates replicative senescence, both mediated via p53. This study tests the hypothesis that DNA is an important target for Ang II-induced ROS leading to senescence via telomere-dependent and independent pathways. DNA damage was quantified using the Comet assay, telomere DNA length by Southern blotting and hVSMC senescence by senescence-associated beta-galactosidase staining. Exposure to Ang II increased DNA damage in hVSMCs within 4 hours. Inhibition by an AT1 receptor antagonist (losartan metabolite: E3174) or catalase, confirmed that Ang II-induced DNA damage was AT1 receptor-mediated, via the induction of ROS. Acute exposure to Ang II resulted in SIPS within 24 hours that was prevented by coincubation with E3174 or catalase. SIPS was associated with increased p53 expression but was not dependent on telomere attrition because overexpression of human telomerase did not prevent Ang II-induced SIPS. Exposure to Ang II over several population doublings accelerated the rate of telomere attrition (by >2-fold) and induced premature replicative senescence of hVSMCs--an effect that was also attenuated by E3174 or catalase. These data demonstrate that Ang II-induced ROS-mediated DNA damage results in accelerated biological aging of hVSMCs via 2 mechanisms: (1) Acute SIPS, which is telomere independent, and (2) accelerated replicative senescence which is associated with accelerated telomere attrition.  相似文献   

12.
13.
14.
Senescent chondrocytes accumulate with aging in articular cartilage, a process that interferes with cartilage homeostasis and increases the risk of cartilage degeneration. We showed previously that chondrocyte telomere length declines with donor age, which suggests that the aging process is telomere dependent. From these results we hypothesized that telomerase should delay the onset of senescence in cultured chondrocytes. Population doubling limits (PDL) were determined for chondrocytes expressing telomerase. We found that telomerase alone did not extend PDL beyond controls that senesced after 25 population doublings. The human papillomavirus 16 oncogenes E6 and E7 were transduced into the same cell population to investigate this telomere-independent form of senescence further. Chondrocytes expressing E6 and E7 grew longer than the telomerase cDNA (hTERT) cells but still senesced at 55 population doublings. In contrast, chondrocytes expressing telomerase with E6 and E7 grew vigorously past 100 population doublings. We conclude that although telomerase is necessary for the indefinite extension of chondrocyte life span, telomere-independent senescence limits PDL in vitro and may play a role in the age-related accumulation of senescent chondrocytes in vivo.  相似文献   

15.
Cellular senescence arrests the proliferation of mammalian cells at risk for neoplastic transformation, and is also associated with aging. However, the factors that cause cellular senescence during aging are unclear. Excessive reactive oxygen species (ROS) have been shown to cause cellular senescence in culture, and accumulated molecular damage due to mitochondrial ROS has long been thought to drive aging phenotypesin vivo. Here, we test the hypothesis that mitochondrial oxidative stress can promote cellular senescence in vivo and contribute to aging phenotypes in vivo, specifically in the skin. We show that the number of senescent cells, as well as impaired mitochondrial (complex II) activity increase in naturally aged mouse skin. Using a mouse model of genetic Sod2 deficiency, we show that failure to express this important mitochondrial anti-oxidant enzyme also impairs mitochondrial complex II activity, causes nuclear DNA damage, and induces cellular senescence but not apoptosis in the epidermis. Sod2 deficiency also reduced the number of cells and thickness of the epidermis, while increasing terminal differentiation. Our results support the idea that mitochondrial oxidative stress and cellular senescence contribute to aging skin phenotypes in vivo.  相似文献   

16.
17.
The mitochondrial theory of aging predicts that functional alterations in mitochondria contribute to the aging process. Whereas this hypothesis implicates increased production of reactive oxygen species (ROS) as a driving force of the aging process, little is known about molecular mechanisms by which mitochondrial impairment might contribute to aging. Using cellular senescence as a model for human aging, we have recently reported partial uncoupling of the respiratory chain in senescent human fibroblasts. In the present communication, we address a potential cause-effect relationship between mitochondrial impairment and the appearance of a senescence-like phenotype in young cells. We found that treatment by antimycin A delays proliferation and induces premature senescence in a subset of the cells, associated with increased reactive oxygen species (ROS) production. Quenching of ROS by antioxidants did however not restore proliferation capacity nor prevent premature senescence. Premature senescence is also induced upon chronic exposure to oligomycin, irrespective of ROS production, and oligomycin treatment induced the up-regulation of the cdk inhibitors p16, p21 and p27, which are also up-regulated in replicative senescence. Thus, besides the well-established influence of ROS on proliferation and senescence, a reduction in the level of oxidative phosphorylation is causally related to reduced cell proliferation and the induction of premature senescence.  相似文献   

18.
目的 研究脑蛋白水解物(CH)-Ⅰ延缓D-半乳糖(D-gal)致C57小鼠衰老的作用机制.方法 C57/BL6N小鼠随机分为对照组、模型组、CH-Ⅰ低剂量组和CH-Ⅰ高剂量组,皮下注射D-gal以诱导衰老模型,给药组腹腔注射CH-Ⅰ.Morris水迷宫实验检测小鼠的学习和记忆能力,苏木素-伊红(HE)染色观察神经元的形...  相似文献   

19.
Replicative senescence of human fibroblasts in vitro has been used as a model for in vivo aging. The onset of replicative senescence varies between several months to years. A colony formation assay, critically dependent on growth speed, can be performed within weeks, and has been reported being an indicator for the onset of replicative senescence. Earlier we could not find a correlation between growth speed in mass cultures and onset of replicative senescence of human fibroblast strains. Therefore, we studied the colony formation assay in 23 fibroblast strains that varied widely in their replicative capacity. Neither the number nor the size of colonies was related to the onset of replicative senescence. The number of cells within the colonies was modestly correlated to the growth speed of the mass cultures. We conclude that the colony formation assay does not reflect the onset of replicative senescence in human fibroblasts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号