首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Although cyclooxygenase-1 (COX-1) inhibition is thought to be a major mechanism of gastric damage by nonsteroidal anti-inflammatory drugs (NSAIDs), some COX-1-selective inhibitors exhibit strong analgesic effects without causing gastric damage. However, it is not clear whether their analgesic effects are attributable to COX-1-inhibitory activity or other bioactivities. Here, we report that N-(5-amino-2-pyridinyl)-4-(trifluoromethyl)benzamide ( 18f, TFAP), which has a structure clearly different from those of currently available COX-1-selective inhibitors, is a potent COX-1-selective inhibitor (COX-1 IC 50 = 0.80 +/- 0.05 microM, COX-2 IC 50 = 210 +/- 10 microM). This compound causes little gastric damage in rats even at an oral dose of 300 mg/kg, though it has an analgesic effect at as low a dose as 10 mg/kg. Our results show that COX-1-selective inhibitors can be analgesic agents without causing gastric damage.  相似文献   

2.
Selective cyclooxygenase-2 (COX-2) inhibitors have been shown to be potent antiinflammatory agents with fewer side effects than currently marketed nonsteroidal antiinflammatory drugs (NSAIDs). Initial mass screening and subsequent structure-activity relationship (SAR) studies have identified 4b (PD138387) as the most potent and selective COX-2 inhibitor within the thiazolone and oxazolone series of di-tert-butylphenols. Compound 4b has an IC50 of 1.7 microM against recombinant human COX-2 and inhibited COX-2 activity in the J774A.1 cell line with an IC50 of 0.17 microM. It was inactive against purified ovine COX-1 at 100 microM and did not inhibit COX-1 activity in platelets at 20 microM. Compound 4b was also orally active in vivo with an ED40 of 16 mg/kg in the carrageenan footpad edema (CFE) assay and caused no gastrointestinal (GI) damage in rats at the dose of 100 mg/kg but inhibited gastric prostaglandin E2 (PGE2) production in rats' gastric mucosa by 33% following a dose of 100 mg/kg. The SAR studies of this chemical series revealed that the potency and selectivity are very sensitive to minor structural changes. A simple isosteric replacement led to the reversal of selectivity.  相似文献   

3.
A group of regioisomeric 3,4,6-triphenylpyran-2-ones with a MeSO(2) pharmacophore at the para-position of either a C-3 phenyl or a C-4 phenyl substituent on the central six-membered pyran-2-one ring were prepared and evaluated in vitro for their abilities to inhibit the isozymes COX-1 and COX-2. Structure-activity relationship (SAR) data, acquired by substituent modification at the para-position of the C-6 phenyl ring attached to the central pyranone, showed that 6-(4-methoxyphenyl)-3-(4-methanesulfonylphenyl)-4-phenylpyran-2-one (12e) was the most potent and selective COX-2 inhibitor (COX-2 IC(50) = 0.02 microM; COX-1 IC(50) > 100 microM) with a high COX-2 selectivity index (SI > 5000) relative to the reference drugs celecoxib (COX-2 IC(50) = 0.07 microM; SI = 474) and rofecoxib (COX-2 IC(50) = 0.50 microM; SI > 200). 6-(4-Methoxyphenyl)-3-(4-methanesulfonylphenyl)-4-phenylpyran-2-one (12e) was a more potent oral antiinflammatory agent (ID(50) = 5.6 mg/kg) than celecoxib (ID(50) = 10.8 mg/kg) in a carrageenan-induced rat paw edema assay. In a 4% NaCl-induced abdominal constriction assay, a 5 mg/kg oral dose of 12e exhibited good analgesic activity at different time intervals producing 37.5 and 69% inhibition of writhing at 30 and 60 min, respectively. In contrast, the corresponding 6-(4-methoxyphenyl)-4-(4-methanesulfonylphenyl)-3-phenylpyran-2-one regiosiomer (12o) was a less potent and selective COX-2 inhibitor (COX-2 IC(50) = 0.45 microM; SI = 70). A molecular modeling study for 12e indicated that the p-OMe substituent on the C-6 phenyl ring interacts with the COX-2 binding site amino acids Ile(345), Val(349), Leu(359), Leu(531), and Met(535) and that the OMe substituent may be responsible for proper orientation of the C-3 p-SO(2)Me-phenyl ring within the COX-2 secondary pocket (Gln(192), Arg(513), and Phe(518)). These results show that the COX-2 selectivity and potency of 3,4,6-triphenylpyranone regioisomers can be modulated by appropriate placement of the p-SO(2)Me pharmacophore on either the C-3 or C-4 phenyl moiety. In addition, electronic properties at the para-position of a C-6 phenyl substituent on the central pyranone ring govern COX-2 inhibitory potency and selectivity by controlling the orientation of the p-SO(2)Me pharmacophore within the COX-2 secondary pocket.  相似文献   

4.
A group of 1,3-diarylprop-2-yn-1-ones (13, 17, 23, 26 and 27) possessing a C-3 p-SO2Me COX-2 pharmacophore were designed, synthesized and evaluated as potential dual inhibitors of cyclooxygenase-1/2 (COX-1/2) and 5/15-lipoxygenases (5/15-LOX) that exhibit vivo antiinflammatory and analgesic activities. Among this class of compounds, 3-(4-methanesulfonylphenyl)-1-(4-fluorophenyl)prop-2-yn-1-one (13h) was identified as a potent and selective inhibitor of COX-2 (COX-2 IC50 = 0.1 microM; SI = 300), being 5-fold more potent than rofecoxib (COX-2 IC50 = 0.5 microM; SI > 200). In a rat carrageenan-induced paw edema assay 13h exhibited moderate antiinflammatory activity (26% inhibition of inflammation) at 3 h after administration of a 30 mg/kg oral dose. A related dual COX-1/2 and 5/15-LOX inhibitor 3-(4-methanesulfonylphenyl)-1-(4-cyanophenyl)prop-2-yn-1-one (13g, COX-1 IC50 = 31.5 microM; COX-2 IC50 = 1.0 microM; SI = 31.5; 5-LOX IC50 = 1.0 microM; 15-LOX IC50 = 3.2 microM) exhibited more potent antiinflammatory activity (ED50 = 90 mg/kg), being superior to the reference drug aspirin (ED50 = 129 mg/kg). Within this group of compounds 3-(4-methanesulfonylphenyl)-1-(4-isopropylphenyl)prop-2-yn-1-one (13e) emerged as having an optimal combination of in vitro COX-1/2 and 5/15-LOX inhibitory effects (COX-1 IC50 = 9.2 microM; COX-2 IC50 = 0.32 microM; SI = 28; 5-LOX IC50 = 0.32 microM; 15-LOX IC50 = 0.36 microM) in conjunction with a good antiinflammatory activity (ED50 = 35 mg/kg) compared to the reference drug celecoxib (ED50 = 10.8 mg/kg) when administered orally. A molecular modeling study where 13e was docked in the COX-2 binding site indicated the C-1 p-i-Pr group was positioned within a hydrophobic pocket (Phe205, Val344, Val349, Phe381 and Leu534), and that this positioning of the i-Pr group facilitated orientation of the C-3 p-SO2Me COX-2 pharmacophore such that it inserted into the COX-2 secondary pocket (His90, Arg513, Ile517 and Val523). A related docking study of 13e in the 15-LOX binding site indicates that the C-3 p-SO2Me COX-2 pharmacophore was positioned in a region closer to the catalytic iron site where it undergoes a hydrogen bonding interaction with His541 and His366, and that the C-1 p-i-Pr substituent is buried deep in a hydrophobic pocket (Ile414, Ile418, Met419 and Ile593) near the base of the 15-LOX binding site.  相似文献   

5.
Two isoforms of the cyclooxygenase (COX) enzyme have been identified: COX-1, which is expressed constitutively, and COX-2, which is induced in inflammation. Recently, it has been shown that selective COX-2 inhibitors have antiinflammatory activity and lack the GI side effects typically associated with NSAIDs. Initial mass screening and subsequent SAR studies have identified 6b (PD164387) as a potent, selective, and orally active COX-2 inhibitor. It had IC50 values of 0.14 and 100 microM against recombinant human COX-2 and purified ovine COX-1, respectively. It inhibited COX-2 activity in the J774A.1 cell line with an IC50 of 0.18 microM and inhibited COX-1 activity in platelets with an IC50 of 3.1 microM. The choline salt of compound 6b was also orally active in vivo with an ED40 of 7. 1 mg/kg in the carrageenan footpad edema (CFE) assay. In vivo studies in rats at a dose of 100 mg/kg showed that this compound inhibited gastric prostaglandin E2 (PGE2) production in gastric mucosa by 77% but caused minimal GI damage. SAR studies of this chemical series revealed that the potency and selectivity are very sensitive to minor structural changes.  相似文献   

6.
The acylphloroglucinol derivative hyperforin is the major lipophilic constituent in the herb Hypericum perforatum (St. John's wort). The aim of the present study was to investigate if hyperforin as well as extracts of H. perforatum can suppresses the activities of 5-lipoxygenase (5-LO) and cyclooxygenases (COX), key enzymes in the formation of proinflammatory eicosanoids from arachidonic acid (AA). In freshly isolated human polymorphonuclear leukocytes stimulated with Ca(2+) ionophore A23187, hyperforin inhibited 5-LO product formation with IC(50) values of about 1-2 microM, in the absence or presence of exogenous AA (20 microM), respectively, being almost equipotent to the well-documented 5-LO inhibitor zileuton (IC(50) = 0.5-1 microM). Experiments with purified human 5-LO demonstrate that hyperforin is a direct 5-LO inhibitor (IC(50) approximately 90 nM), acting in an uncompetitive fashion. In thrombin- or ionophore-stimulated human platelets, hyperforin suppressed COX-1 product (12(S)-hydroxyheptadecatrienoic acid) formation with an IC(50) of 0.3 and 3 microM, respectively, being about 3- to 18-fold more potent than aspirin. At similar concentrations, hyperforin suppressed COX-1 activity in platelets in presence of exogenous AA (20 microM) as well as in cell-free systems. Hyperforin could not interfere with COX-2 product formation and did not significantly inhibit 12- or 15-LO in platelets or leukocytes, respectively. We conclude that hyperforin acts as a dual inhibitor of 5-LO and COX-1 in intact cells as well as on the catalytic activity of the crude enzymes, suggesting therapeutic potential in inflammatory and allergic diseases connected to eicosanoids.  相似文献   

7.
8.
We assessed the effect of novel selective thiopheneacetic acids on cyclooxygenase isoenzymes in vitro and in vivo. Thiopheneacetic acid Eltenac and derivatives were investigated in this study. In human whole blood experiments these derivatives were potent inhibitors of COX-2 (IC(50)=0.02-0.4 microM) with less pronounced effect on COX-1 (IC(50)=0.15-5.6 microM). With COX-1/COX-2 ratios between 7.5- and 16-fold they are in the range of Celecoxib (13-fold). The parent drug Eltenac demonstrated no selectivity for COX-2. In a rat paw edema model, these compounds showed reduction of edema volume in the range of 36-45% at 10 mg/kg (Eltenac 52%, Diclofenac 51%). However, the compounds were superior to Diclofenac and Eltenac with respect to their ulcerogenic and gastrointestinal properties. Introduction of a nitrate-ester moiety to either Eltenac or a derivative did neither improve selectivity or potency in vitro, nor ulcerogenicity in vivo. Molecular modeling of selective thiopheneacetic acid derivatives to the active site of human COX-2 suggested similar binding properties as Lumiracoxib and Diclofenac. In summary, modification of Eltenac generates moderately selective COX-2 drugs in the range of Celecoxib with respect to potency and selectivity. The drugs showed potent anti-inflammatory properties and significant improvement of animal survival in a sub-chronical experimental set up. Thiopheneacetic derivatives are characterized by low pK(a) values, short microsomal half-lives and binding mode to COX-2 similar to Diclofenac and Lumiracoxib. These properties may also have an impact on the transient inhibition of COX-2-dependent prostacyclin, thereby being less associated with vascular complications.  相似文献   

9.
A novel series of benzo-1,3-dioxolane metharyl derivatives was synthesized and evaluated for cyclooxygenase-2 (COX-2) and cyclooxygenase-1 (COX-1) inhibition in human whole blood (HWB). In the present study, structure-activity relationships (SAR) in the metharyl analogues were investigated. The spacer group and substitutions in the spacer group were found to be quite important for potent COX-2 inhibition. Compounds in which a methylene group (8a-c), carbonyl group (12a-c), or methylidene group (7a-c) connected cycloalkyl groups to the central benzo-1,3-dioxolane template were found to be potent and selective COX-2 inhibitors. Aryl-substituted compounds linked to the central ring by either a methylene or a carbonyl spacer resulted in potent, highly selective COX-2 inhibitors. In this series of substituted-(2H-benzo[3,4-d]1,3-dioxolan-5-yl))-1-(methylsulfonyl)benzene compounds, SAR studies demonstrated that substitution at the 3-position of the aryl group optimized COX-2 selectivity and potency, whereas substitution at the 4-position attenuated COX-2 inhibition. Mono- or difluoro substitution at meta position(s), as in 22c and 22h, was advantageous for both in vitro COX-2 potency and selectivity (e.g., COX-2 IC(50) for 22c = 1 microM and COX-1 IC(50) for 22c = 20 microM in HWB assay). Several novel compounds in the (2H-benzo[3,4-d]1,3-dioxolan-5-yl))-1-(methylsulfonyl)benzene series, as shown in structures 7c, 8a, 12a, 21c, 22c, 22e, and 22h, selectively inhibited COX-2 activity by 40-50% at a test concentration of 1 microM in an in vitro HWB assay.  相似文献   

10.
We characterized the Ca2+-sensitizing and phosphodiesterase (PDE)-inhibitory potentials of levosimendan and enoximone to assess their contributions to the positive inotropic effects of these drugs. In guinea pig hearts perfused in the working-heart mode, the maximal increase in cardiac output (55%, P<0.05) was attained at 50 nM levosimendan. The corresponding value for enoximone (36%) was significantly smaller (P<0.05) and was observed at a higher concentration (500 nM). In permeabilized myocyte-sized preparations levosimendan evoked a maximal increase of 55.8+/-8% (mean+/-SEM) in isometric force production via Ca2+ sensitization (pCa 6.2, EC50 8.4 nM). Enoximone up to a concentration of 10 microM failed to influence the isometric force. The PDE-inhibitory effects were probed on the PDE III and PDE IV isoforms. Levosimendan proved to be a 1300-fold more potent and a 90-fold more selective PDE III inhibitor (IC50 for PDE III 1.4 nM, and IC50 for PDE IV 11 microM, selectivity factor approximately 8000) than enoximone (IC50 for PDE III 1.8 microM, and IC50 for PDE IV 160 microM, selectivity factor approximately 90). Hence, our data support the hypothesis that levosimendan exerts positive inotropy via a Ca2+-sensitizing mechanism, whereas enoximone does so via PDE inhibition with a limited PDE III versus PDE IV selectivity.  相似文献   

11.
A new class of acyclic (Z)-2-alkyl-1,2-diphenyl-1-(4-methanesulfonylphenyl)ethenes (7) was designed for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1 and COX-2 isozyme inhibition structure-activity studies identified (Z)-1,2-diphenyl-1-(4-methanesulfonylphenyl)oct-1-ene (7d) as a potent COX-2 inhibitor (IC(50) = 0.42 microM) with a high COX-2 selectivity index (SI > 234). In a carrageenan-induced rat paw edema assay, (Z)-7d exhibited excellent antiinflammatory activity (ID(50) = 1.1 mg/kg). The molecular modeling and structure-activity data acquired indicate that (Z)-olefins having cis C-1 4-methanesulfonylphenyl and C-2 unsubstituted phenyl (or 4-acetoxyphenyl) substituents in conjunction with a C-1 phenyl ring and a C-2 alkyl substituent of appropriate length constitute a suitable template for the design of a novel class of acyclic (Z)-2-alkyl-1,1,2-triaryleth-1-ene COX-2 inhibitors.  相似文献   

12.
We report here the preclinical anti-inflammatory profile of CS-706 [2-(4-ethoxyphenyl)-4-methyl-1-(4-sulfamoylphenyl)-1H-pyrrole], a novel cyclooxygenase-2 (COX-2) selective inhibitor. CS-706 selectively inhibited COX-2 in a human whole blood assay with an IC(50) of 0.31 microM, compared with an IC(50) of 2.2 microM for COX-1. The selectivity ratio of CS-706 was higher than those of the conventional non-steroidal anti-inflammatory drugs naproxen, indomethacin, and Diclofenac-Na, whereas it was lower than those of rofecoxib, valdecoxib and etoricoxib. It was similar to that of celecoxib. The pharmacokinetic profile of CS-706 showed rapid absorption and dose-proportional exposure after oral administration to rats. CS-706 inhibited prostaglandin E(2) production in inflamed tissue induced by yeast-injection in rats with potency similar to that of indomethacin. However, it inhibited gastric mucosal prostaglandin E(2) production in normal rats weakly compared with indomethacin. CS-706 ameliorated both yeast-induced inflammatory acute pain (ED(50)=0.0090 mg/kg) and adjuvant-induced chronic arthritic pain (ED(50)=0.30 mg/kg) in rats. CS-706 showed more potent antinociceptive activity than celecoxib and rofecoxib in these models. In an adjuvant-induced arthritic model in rats, CS-706 suppressed foot swelling prophylactically with an ID(50) of 0.10 mg/kg/day, and decreased foot swelling in the established arthritis therapeutically in a dose range of 0.040 to 1.0 mg/kg/day. Single administration of up to 100 mg/kg of CS-706 induced no significant gastric lesions in rats. In conclusion, CS-706 is a COX-2-selective inhibitor with a potent antinociceptive and anti-inflammatory activity and a gastric safety profile.  相似文献   

13.
Celecoxib (13) and rofecoxib (17) analogues, in which the respective SO2NH2 and SO2Me hydrogen-bonding pharmacophores were replaced by a dipolar azido bioisosteric substituent, were investigated. Molecular modeling (docking) studies showed that the azido substituent of these two analogues (13, 17) was inserted deep into the secondary pocket of the human COX-2 binding site where it undergoes electrostatic interaction with Arg(513). The azido analogue of rofecoxib (17), the most potent and selective inhibitor of COX-2 (COX-1 IC(50) = 159.7 microM; COX-2 IC(50) = 0.196 microM; COX-2 selectivity index = 812), exhibited good oral antiinflammatory and analgesic activities.  相似文献   

14.
1. Previous studies with indolyl derivatives as monoamine oxidase (MAO) inhibitors have shown the relevance of the indole structure for recognition by the active site of this enzyme. We now report a new series of molecules with structural features which determine the selectivity of MAO inhibition. 2. A benzyloxy group attached at position 5 of the indole ring is critical for this selective behaviour. Amongst all of these benzyloxy-indolyl methylamines, N-(2-propynyl)-2-(5-benzyloxyindol)methylamine FA-73 was the most potent MAO-B 'suicide' inhibitor studied. 3. The Ki values for MAO-A and MAO-B were 800+/-60 and 0.75+/-0.15 nM, respectively. These data represent a selectivity value of 1066 for MAO-B, being 48 times more selective than L-deprenyl (Ki values of 376+/-0.032 and 16.8+/-0.1 nM for MAO A and MAO-B, respectively). The IC50 values for dopamine uptake in striatal synaptosomal fractions from rats were 150+/-8 microM for FA-73 and 68 +/- 10 microM for L-deprenyl whereas in human caudate tissue the IC50 values were 0.36+/-0.015 microM for FA-73 and 0.10+/-0.007 microM for L-deprenyl. Moreover, mouse brain MAO-B activity was 90% ex vivo inhibited by both compounds 1 h after 4 mg kg(-1) administration, MAO-A activity was not affected. 4. These novel molecules should provide a better understanding of the active site of monoamine oxidase and could be the starting point for the design of further selective, non-amphetamine-like MAO-B inhibitors with therapeutic potential for the treatment of neurological disorders.  相似文献   

15.
Currently, there are no selective, well characterized inhibitors for CYP2A6. Therefore, the effects of trans-(+/-)-2-phenylcyclopropylamine (tranylcypromine), a potent CYP2A6 inhibitor, on human liver microsomal cytochromes P450 (CYP) were studied to elucidate its selectivity. The IC50 value of tranylcypromine in coumarin 7-hydroxylation (CYP2A6 model activity) was 0.42 +/- 0.07 microM and in chlorzoxazone 6-hydroxylation (CYP2E1 model activity) 3.0 +/- 1.1 microM. The IC50 values for CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 activities were >10 microM. Potency and selectivity of tranylcypromine were strongly dependent on the amine group, because its nonamine analog cyclopropylbenzene was much less potent inhibitor of CYP1A, CYP2A6, CYP2C19, and CYP2E1 activities and did not inhibit at all CYP2C9, CYP2D6, or CYP3A4 activities. In human liver microsomes tranylcypromine induced type II and cyclopropylbenzene type I difference spectrum. According to the double reciprocal analysis of these spectral responses both tranylcypromine and cyclopropylbenzene may have at least two P450-related binding sites in liver microsomes. The K(a) values of tranylcypromine varied from 4.5 to 15.1 microM and -34.3 to 167 microM in microsomes derived from three different livers and of cyclopropylbenzene from -1.6 to 10.1 microM and -34.6 and 75.2 microM in the same liver microsomes. Based on these results, tranylcypromine seems an adequately selective CYP2A6 inhibitor for in vitro use.  相似文献   

16.
A series of 21 analogues of tetrahydrolipstatin (THL, 1) were synthesized and tested as inhibitors of the formation or hydrolysis of the endocannabinoid 2-arachidonoylglycerol (2-AG). Three of the novel compounds, i.e., 11, 13, and 15, inhibited 2-AG formation via the diacylglycerol lipase alpha (DAGLalpha) with IC 50 values lower than 50 nM (IC 50 of THL = 1 microM) and were between 23- and 375-fold selective vs 2-AG hydrolysis by monoacylglycerol lipase (MAGL) as well as vs cannabinoid CB 1 and CB 2 receptors and anandamide hydrolysis by fatty acid amide hydrolase (FAAH). Three other THL analogues, i.e., 14, 16, and 18, were slightly more potent than THL against DAGLalpha and appreciably selective vs MAGL, CB receptors, and FAAH (15-26-fold). One compound, i.e., 8, was a potent inhibitor of MAGL-like activity (IC 50 = 0.41 microM), and relatively ( approximately 7-fold) selective vs the other targets tested.  相似文献   

17.
Incorporation of a spacer group between the central scaffold and the aryl ring resulted in a new cyclooxygenase-2 (COX-2) selective inhibitor core structure, 3-[4-(methylsulfonyl)phenyl]-5-(trifluoromethyl)(2-pyridyl) phenyl ketone (20), with COX-2 IC50 = 0.25 microM and COX-1 IC50 = 14 microM (human whole blood assay). Compound 20 was orally active in the rat air pouch model of inflammation, inhibiting white blood cell infiltration and COX-2-derived PG production. Our data support the identification of a novel COX-2 selective inhibitor core structure exemplified by 20.  相似文献   

18.
5-Aryl-2,2-dialkyl-4-phenyl-3(2H)furanone derivatives were studied as a novel class of selective cyclooxygenase-2 inhibitors with regard to synthesis, in vitro SAR, antiinflammatory activities, pharmacokinetic considerations, and gastric safety. 1f, a representative compound for methyl sulfone derivatives, showed a COX-2 IC(50) comparable to that of rofecoxib. In case of 20b, a representative compound for sulfonamide derivatives, a potent antiinflammatory ED(50) of 0.1 mg kg(-1) day(-1) was observed against adjuvant-induced arthritis by a preventive model, positioning 20b as one of the most potent COX-2 inhibitors ever reported. Furthermore, 20b showed strong analgesic activity as indicated by its ED(50) of 0.25 mg/kg against carrageenan-induced thermal hyperalgesia in the Sprague-Dawley rat. 3(2H)Furanone derivatives showed due gastric safety profiles as selective COX-2 inhibitors upon 7-day repeat dosing. A highly potent COX-2 inhibitor of the 3(2H)furanone scaffold could be considered suitable for a future generation COX-2 selective arthritis medication with improved safety profiles.  相似文献   

19.
1. Fluvoxamine and seven other selective serotonin reuptake inhibitors (SRRI) were tested for their ability to inhibit a number of human cytochrome P450 isoforms (CYPs). 2. None of the drugs showed potent inhibition of CYP2A6 (coumarin 7-hydroxylase) or CYP2E1 (chlorzoxazone 6-hydroxylase), while norfluoxetine was the only potent inhibitor of CYP3A having IC50 values of 11 microM and 19 microM for testosterone 6 beta-hydroxylase and cortisol 6 beta-hydroxylase, respectively. 3. Norfluoxetine, sertraline and fluvoxamine inhibited CYP1A1 (7-ethoxyresorufin O-deethylase) in microsomes from human placenta (IC50 values 29 microM, 35 microM and 80 microM, respectively). Fluvoxamine was a potent inhibitor of CYP1A2-mediated 7-ethoxyresorufin O-deethylase activity (IC50 = 0.3 microM) in human liver. 4. In microsomes from three human livers fluvoxamine potently inhibited all pathways of theophylline biotransformation, the apparent inhibitor constant, Ki, was 0.07-0.13 microM, 0.05-0.10 microM and 0.16-0.29 microM for inhibition of 1-methylxanthine, 3-methylxanthine and 1,3-dimethyluric acid formation, respectively. Seven other SSRIs showed either weak or no inhibition of theophylline metabolism. 5. Ethanol inhibited the formation of 1,3-dimethyluric acid with K(i) value of 300 microM, a value which is consistent with inhibition of CYP2E1. Ethanol and fluvoxamine both inhibited 8-hydroxylation by about 45% and, in combination, the compounds decreased the formation of 1,3-dimethyluric acid by 90%, indicating that CYP1A2 and CYP2E1 are equally important isoforms for the 8-hydroxylation of theophylline. 6. It is concluded that pharmacokinetic interaction between fluvoxamine and theophylline is due to potent inhibition of CYP1A2.  相似文献   

20.
The metabolism of 2-[1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]-N-phenethyl-acetamide (indomethacin phenethylamide, LM-4108), a highly selective cyclooxygenase-2 inhibitor, was studied in rat, mouse, and human liver microsomes. The primary site of oxidation in all species examined was on the methylene carbons of the phenethyl side chain to form the 1'- and 2'-hydroxy and 2'-oxo metabolites as determined by electrospray ionization liquid chromatography-tandem mass spectrometry. Half-lives for the disappearance of 10 microM LM-4108 in rat, human, and mouse liver microsomes (0.15 pmol P450/ml) were 11 min, 21 min, and 51 min, respectively. Indomethacin formation was not observed in incubations with rat, mouse, or human liver microsomes. Both the 2'-hydroxy-LM-4108 and 2'-oxo-LM-4108 metabolites were synthesized and found to be equipotent to the parent compound with regard to COX-2 inhibitory potency and selectivity [2'-hydroxy-LM-4108: IC(50)(COX-2) = 0.06 microM, IC(50)(COX-1) >66 microM; 2'-oxo-LM-4108: IC(50)(COX-2) = 0.05 microM, IC(50)(COX-1) >66 microM]. The formation of the metabolites was strongly inhibited by specific CYP3A4 inhibitors ketoconazole and troleandomycin but not by other isoform-selective inhibitors. These findings were confirmed by demonstrating that cloned, expressed CYP3A4 catalyzed side chain oxidation. O-Demethylation was a minor oxidative pathway in contrast to the metabolism of indomethacin and was catalyzed by CYP2D6. Upon intravenous administration of LM-4108 to Sprague-Dawley rats, oxidative metabolism on the phenethyl side chain constituted the rate-limiting steps in its clearance. The active metabolites, 2'-oxo- and 2'-hydroxy-LM-4108, as well as 1'-hydroxy-LM-4108, were all observed in rat plasma and thus may contribute to COX-2 inhibition in vivo. The glucuronides of 2'hydroxy-LM-4108 and O-desmethyl-2'-hydroxy-LM-4108 were also identified in rat bile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号