首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dielectric ceramics with both excellent energy storage and optical transmittance have attracted much attention in recent years. However, the transparent Pb-free energy-storage ceramics were rare reported. In this work, we prepared transparent relaxor ferroelectric ceramics (1 − x)Bi0.5Na0.5TiO3xNaNbO3 (BNT–xNN) by conventional solid-state reaction method. We find the NN-doping can enhance the polarization and breakdown strength of BNT by suppressing the grain growth and restrained the reduction of Ti4+ to Ti3+. As a result, a high recoverable energy-storage density of 5.14 J/cm3 and its energy efficiency of 79.65% are achieved in BNT–0.5NN ceramic at 286 kV/cm. Furthermore, NN-doping can promote the densification to improve the optical transmittance of BNT, rising from ∼26% (x = 0.2) to ∼32% (x = 0.5) in the visible light region. These characteristics demonstrate the potential application of BNT–xNN as transparent energy-storage dielectric ceramics.  相似文献   

2.
The structure and electrical properties of perovskite layer structured (PLS) (1?x)Sr2Nb2O7x(Na0.5Bi0.5)TiO3 (SNO‐NBT) prepared by solid‐state reaction method are investigated. The addition of NBT is beneficial to speed up mass transfer and particle rearrangement during sintering, leading to better sinterability and higher bulk density up to 96.8%. The solid solution limit x in the SNO‐NBT system is below 0.03, over which Ti4+ is preferable to aggregate and results in the generation of secondary phase. After the modification by NBT, all SNO‐NBT ceramics have a Curie temperature Tc up to over 1300°C and piezoelectric constant d33 about 1.0 pC/N. The breakthrough of piezoelectricity can mainly be attributed to rotation and distortion of oxygen octahedron as well as higher poling electric field resulting from the improved bulk density. This study not only demonstrates how to improve piezoelectricity by NBT addition, but also opens up a new direction to design PLS piezoceramics by introducing appropriate second phase.  相似文献   

3.
Rhombohedral 0.69Pb(Zr0.47Ti0.53)‐0.31Pb(Zn0.6Ni0.4)NbO3 (PZT‐PZNN) ceramics were textured using 10.0 vol. % BaTiO3 (BT) platelets along the <001> direction at 950°C with a high Lotgering factor of 95.3%. BT platelets did not react with the PZT‐PZNN ceramics, and the textured PZT‐PZNN ceramic had a tetragonal structure. The PZT‐PZNN ceramics exhibited a strain of 0.174% with a piezoelectric strain constant (d*33) of 580 pC/N at 3.0 kV/mm. The textured PZT‐PZNN ceramic showed an increased strain of 0.276% and d*33 of 920 pC/N at 3.0 kV/mm, which can be explained by the domain rotation. However, the d33 values of the textured specimens are smaller than those of the untextured specimens because of the small remanent polarization and relative dielectric constant of BT platelets. The textured PZT‐PZNN ceramic synthesized in this work can be used for piezoelectric multilayer actuators because of its large strain and low sintering temperature.  相似文献   

4.
Plate-like NaNbO3 particles were used as templates to fabricate grain-oriented 0.96(0.8Na0.5Bi0.5TiO3–0.2 K0.5Bi0.5TiO3)–0.04NaNbO3 (NKBT) ceramics. The effects of the sintering temperature and the soaking time on the grain orientation and the microstructure of the textured NKBT ceramics were investigated, and the dielectric relaxor behavior is discussed. The results show that textured ceramics were successfully obtained with orientation factor more than 0.8. The textured ceramics have a microstructure with strip-like grains aligning in the direction parallel to the casting plane. The degree of grain orientation increases initially, then decreases with increasing sintering temperature, and increases continuously with increasing soaking time. The textured NKBT ceramics shows obvious dielectric relaxor characteristics which can be well explained by microdomain–macrodomain transition theory with calculating criterion K. The results show that formation of texture is beneficial to microdomain–macrodomain transition, which lead to weaken relaxor behavior and raise the dielectric constant at Ttr.  相似文献   

5.
The 0.45Bi(Mg0.5Ti0.5)O3–(0.55 ? x)PbTiO3x(Bi0.5Na0.5)TiO3 (BMT–PT–xBNT) ternary solid solution ceramics were prepared via a conventional solid‐state reaction method; the evolution of dielectric relaxor behavior and the electrostrain features were investigated. The XRD and dielectric measurements showed that all studied compositions own a single pseudocubic perovskite structure and undergo a diffuse‐to‐relaxor phase transition owing to the evolution of the domain from a frozen state to a dynamic state. The formation of the above dielectric relaxor behavior was further confirmed by a couple of measurements such as polarization loops, polarization current density curves, as well as bipolar strain loops. A large strain value of ~0.41% at a driving field of 7 kV/mm (normalized strain d33* of ~590 pm/V) was obtained at room temperature for the composition with x = 0.32, which is located near the boundary between ergodic and nonergodic relaxor. Moreover, this electric field‐induced large strain was found to own a frequency‐insensitive characteristic.  相似文献   

6.
In this work, the crystalline phase, domain structure, and electrical properties of [Bi0.5(Na0.84K0.16)0.5]0.96Sr0.04Ti1-xNbxO3 (x = 0.010–0.030) ceramics are investigated. Increasing the Nb content induces the phase transition from coexistent rhombohedral and tetragonal phases to a single pseudo-cubic phase, and the lamellar ferroelectric domains evolve into polar nanoregions. Decreased ferroelectric-to-relaxor transition temperature and enhanced frequency dispersion are found in the temperature-dependent dielectric constant and loss, implying a transition from the non-ergodic to ergodic relaxor state. The Nb substitution significantly degrades the long-range ferroelectric order with sharply decreased piezoelectric coefficients from ? 140 to ? 1 pC/N. However, a large strain of 0.32% at 5 kV/mm (normalized strain of 640 pm/V) is obtained around the critical composition of x = 0.0225. The composition of x = 0.030 shows good temperature insensitivity of the strain response, characterized by 308 pm/V with less than 15% reduction from 25 °C to 125 °C.  相似文献   

7.
The validity of Mn element on 0.93(Bi0.5Na0.5)TiO3‐0.07Ba(Ti0.945Zr0.055)O3 ceramics (BNT‐BZT‐xMn) is certified by doping. On account of multiple effects introduced by Mn, the appropriate Mn content facilitates property improvement effectively. Compared with pure BNT‐BZT, d33 of the component x = 0.25 increases about 8% up to 187 pC/N and Qm of the component x = 1 increases about 84% up to 197. Thermally stimulated depolarization currents (TSDC) measurement reveals Mn additive is helpful to pyroelectric properties as well. The Mn‐doped component x = 0.125 exhibits better pyroelectric performance at room temperature. Corresponding pyroelectric coefficient and the figures of merit reach up to 0.061 μC/(cm2 °C), Fi=217 pm/V, Fν = 0.023 m2/C, and Fd = 12.6 μPa?1/2, respectively, even superior to lead‐based ceramics. Similar pyroelectric advantage is also observed in the component x = 0.5 near depolarization temperature Td. Mn doping has slight harmful influence on the ferroelectric‐to‐relaxor transition temperature TF?R, as well as Td, but hardly shows restriction on application. These results confirm Mn doping is an available strategy to improve BNT‐based ceramics. Therefore, Mn‐doped BNT‐BZT ceramics will be excellent candidates in area of high‐power piezoelectric application and pyroelectric detectors.  相似文献   

8.
Dense SrLa(R0.5Ti0.5)O4 (R=Mg, Zn) ceramics were prepared by a standard solid‐state reaction method. The single phase with complex K2NiF4‐type layered perovskite structure and I4/mmm space group was revealed by XRD, and the refined structure was analyzed by Rietveld analysis. Significantly improved dielectric constant was obtained in SrLa(R0.5Ti0.5)O4 ceramics compared to the analogues SrLaAlO4 and SrLaGaO4, which is attributed to the increasing normalized bond lengths of Sr/La‐O(1) and Sr/La‐O(2a) bonds and the higher polarizability of (R0.5Ti0.5)3+ than Al3+ and Ga3+. In addition, τf converts to a positive value with the increase in dielectric constant. The following microwave dielectric properties were obtained in the dense ceramics: εr=25.5, Qf=72 000 GHz, τf=29 ppm/°C for SrLa(Mg0.5Ti0.5)O4, and εr=29.4, Qf=34 000 GHz, τf=38 ppm/°C for SrLa(Zn0.5Ti0.5)O4. Furthermore, the stability of K2NiF4‐type structure in MLnBO4 [M=Ca, Sr, Ba; Ln=Y, Sm, Nd, La; B=Al, Ga, (Mg0.5Ti0.5), (Zn0.5Ti0.5)] compounds was discussed in relation to the tolerance factor of perovskite layer and the radius ratio of M2+ and Ln3+, based on which near‐zero τf values are expected to be obtained in SrLa(R0.5Ti0.5)O4‐SrLaAlO4 and SrLa(R0.5Ti0.5)O4–SrLaGaO4 unlimited solid solutions.  相似文献   

9.
The dielectric, piezoelectric properties, and fatigue behaviors of stoichiometric (Bi0.5+x/2Na0.5‐x/2)0.94Ba0.06Ti1‐xFexO3 (BNBT‐xFe) ferroelectrics are investigated. Fe substitution leads to the downward shift of the ferroelectric‐relaxor transition temperature (TF‐R) and increase in strain. Meanwhile, fatigue behaviors of the modified ceramics are significantly enhanced. Ex situ X‐ray diffraction and transmission electron microscopy reveal microscopic mechanism for polarization fatigue on different compositions. The fatigue‐free behavior of ferroelectric BNBT‐0.03Fe is not only attributed to a mechanism involving the formation of defect dipoles, which reduces the pinning effect of migratory oxygen vacancies on domain walls, but is also connected to the decrease in easily suppressed field‐induced ferroelectric tetragonal phase. While for ergodic relaxor BNBT0.09Fe, the absence of domain wall contributes to the good fatigue resistance behavior. Interestingly, electric cycling results in an increased fraction of relaxor phase, accompanying by the increase in the total strain and decrease in remnant polarizations.  相似文献   

10.
Ba0.7Sr0.3ZrxTi1?xO3 (BSZT; where x=0.02, 0.04, 0.06, 0.08, 0.1) ceramics were processed through a sol‐gel method at 1450°C for 6 h. All the samples showed a diffuse phase transition which might be due to the presence of polar nanoregions, those associated with the composition inhomogeneity in the BSZT ceramics. The sample with x=0.02 exhibited a dielectric constant (?=23714) which successively decreased with increasing x up to 8569 for the sample with x=0.1 around Tc measured at 10 kHz. Ceramic samples showed a ferroelectric hysteresis behavior similar to relaxor materials.  相似文献   

11.
Lead-free ferroelectric ceramics are very suitable for electrostatic energy storage capacitors due to their outstanding characteristics of high charge-discharge speed, high power density, and environmental friendliness. Herein, a novel material system as (1−x)Na0.5Bi0.5TiO3-xCaZr0.5Ti0.5O3 (NBT-CZT, x = 0, 0.05, 0.10, 0.12, 0.15, and 0.20) was designed and prepared for dielectric energy storage ceramics. It demonstrated that the CZT additives induced a phase transition for the NBT ceramics, from ferroelectric to relaxor ferroelectric. In particular, extremely high stored energy storage density (6.92 and 5.37 J/cm3), high recoverable energy storage density (4.77 and 4.37 J/cm3), and moderate efficiency (69.0% and 81.4%) were achieved in both the samples of x = 0.12 and x = 0.15, respectively. The ceramics exhibited excellent stability of energy storage performance covering a wide temperature (25°C–200°C) and frequency (0.5–50 Hz) range, and also fatigue cycles up to 105. Additionally, the NBT-CZT ceramics had a fast discharge speed (t0.9 < 100 ns) and high power density (24.2 MW/cm3, E = 100 kV/cm, x = 0.15), and the charge-discharge process remained stable even when the measured temperature was up to 160°C. Therefore, the NBT-CZT ceramics have the potential to be utilized in electrostatic energy storage applications.  相似文献   

12.
A new lead-free ferroelectric solid solution between (Ba,Ca)(Zr,Ti)O3 (BCZT) and K0.5Bi0.5TiO3 (KBT) has been systematically investigated in terms of its phase transformations, microstructure, dielectric and ferroelectric properties. The incorporation of KBT into BCZT was found to enhance the sintering behavior, although secondary phases of K4Ti3O8 and BaBi4Ti4O15 were detected at high KBT contents. Chemical heterogeneity was also observed in the form of core-shell grain structures comprising tetragonal ferroelectric BCZT-rich cores with pseudo-cubic relaxor ferroelectric KBT-rich shell regions. Temperature-dependent dielectric property measurements revealed that the BCZT-KBT ceramics exhibited both normal and relaxor ferroelectric behaviour simultaneously, associated directly with the core-shell structure. Ferroelectric hysteresis measurements indicated that the remanent polarisation and coercive field were strongly dependent on KBT content. In common with other lead-free relaxor ferroelectrics, increasing temperature led to the formation of constricted polarisation-electric field hysteresis loops, indicating the occurrence of a reversible electric field-induced nanopolar to long-range ordered ferroelectric state.  相似文献   

13.
Na0.5Bi0.5TiO3 (NBT) platelets with high aspect ratio were synthesized from Na0.5Bi4.5Ti4O15 (NBIT) precursors via a topochemical microcrystal conversion in molten salt conditions. The effect of the synthesis parameters, such as the molten salt system, synthesis temperature, and the molar ratio of Na2CO3 and NBIT, was investigated. The results showed that NaCl–KCl molten salt environment and excess Na2CO3 played a positive role in the synthesis, square‐shaped NBT was obtained at 950°C in NaCl–KCl molten salt and a TiO2‐free environment, and it was a suitable template candidate to achieve NBT‐based textured ceramics using the reactive template grain growth (RTGG) method.  相似文献   

14.
xPb(Zn0.5Te0.5)O3–(1?x)Pb(Zr0.5Ti0.5)O3 (PZnTe–PZT) ceramics were prepared by the solid‐state reaction method. The phase structure, microstructure, ferroelectric and dielectric properties and thermal expansion properties were systematically investigated. X‐ray diffraction analysis showed the morphotropic phase boundary (MPB) existed at the composition of x = 0.08, which was the coexistence of the rhombohedral phase and the tetragonal phase. The grain size of ceramics decreased rapidly from 10‐20 μm to 1‐3 μm when the PZnTe was added in. The PZnTe–PZT ceramics at the MPB composition showed the largest high field effective piezoelectric coefficient and the lowest strain hysteresis H. The dielectric permittivity and phase transition temperature exhibited strongly compositional dependence. A good linear relation was shown in Tm temperature vs x content and a DPT behavior was found in xPZnTe–(1?x)PZT (x = 0.02‐0.08). The thermal expansion properties showed a low thermal expansion coefficient in the low temperature while a high thermal expansion coefficient in the high temperature. Besides, the thermal expansion curve also showed the characteristic of DPT in PZnTe–PZT ceramics.  相似文献   

15.
The crystal structure, electromechanical properties, and electrocaloric effect (ECE) in novel lead‐free (Bi0.5K0.5)TiO3‐La(Mg0.5Ti0.5)O3 ceramics were investigated. A morphotropic phase boundary (MPB) between the tetragonal and pseudocubic phase was found at x = 0.01‐0.02. In addition, the relaxor properties were enhanced with increasing the La(Mg0.5Ti0.5)O3 content. In situ high‐temperature X‐ray diffraction patterns and Raman spectra were characterized to elucidate the phase transition behavior. The enhanced ECE (ΔT = 1.19 K) and piezoelectric coefficient (d33 = 103 pC/N) were obtained for x = 0.01 at room temperature. Meanwhile, the temperature stability of the ECE was considered to be related to the high depolarization temperature and relaxor characteristics of the Bi0.5K0.5TiO3‐based ceramics. The above results suggest that the piezoelectric and ECE properties can be simultaneously enhanced by establishing an MPB. These results also demonstrate the great potential of the studied systems for solid‐state cooling applications and piezoelectric‐based devices.  相似文献   

16.
Sodium bismuth titanate (Na0.5Bi0.5TiO3, NBT) crystals with different morphology, wires, plates and cubes, were synthesized by hydrothermal method. The domain structure in as‐synthesized poled NBT ceramics was observed. The results demonstrate that the domain width of the poled NBT ceramics sintered from wire crystals is slightly larger than that of the NBT ceramics sintered from cube crystals, while the NBT ceramics sintered from plate crystals possess the largest domain width. In particular, the poled NBT ceramics sintered from plate crystals exhibit the optimum piezoelectric coefficient and remnant polarization of 87 pC/N and 36.7 μC/cm2, respectively, which are 55% and 37% higher than those of the NBT ceramics sintered from cube crystals. The expanded domain width and large grain size are responsible for the improvement of ferroelectric, piezoelectric, and dielectric properties in NBT ceramics.  相似文献   

17.
To explore lead-reduced dielectric materials in the SrTiO3–PbTiO3–PbZrO3 ternary system, a novel solid solution between relaxor ferroelectric (Pb0.5Sr0.5)(Zr0.5Ti0.5)O3 and ferroelectric PbTiO3, namely (1 − x)(Pb0.5Sr0.5) (Zr0.5Ti0.5)O3xPbTiO3 (lead–strontium–zirconate–titanate [PSZT]–PT), has been synthesized in the perovskite structure by high-temperature solid-state reaction method in the form of ceramics. The crystal structure and phase symmetry of the materials synthesized were analyzed and resolved based on X-ray powder diffraction (XRD) data through both the Pawley and Rietveld refinements. The results of the structural refinements indicate that at low PT-concentration end of the solid solution system, for example, x = 0.05, the PSZT–PT solid solution exhibits a cubic structural symmetry (with the space group Pm-3m). As the PT concentration (x) increases, the structure of (1 − x)PSZT–xPT gradually transforms from the cubic to a tetragonal (P4mm) phase. In the composition range of x = 0.10–0.25, a mixture of the cubic and tetragonal phases was identified. As the concentration of PT increases, the proportion of the tetragonal phase increases at the expense of the cubic phase. For a composition of x > 0.25, a pure tetragonal phase is observed. The dielectric properties of the materials were studied by measuring the permittivity as a function of temperature at various frequencies. For the composition of x = 0.05, the temperature dependence of dielectric constant shows typical relaxor behavior. For x = 0.35, the dielectric peaks indicate a normal ferroelectric phase transition. Overall, a structural transformation from a central-symmetric, nonpolar cubic phase to a non-centrosymmetric, polar tetragonal phase is induced by the substitution of PT for PSZT in the pseudo-binary solid solution of (1 − x)PSZT–xPT, which also reveals an interesting relaxor to ferroelectric crossover phenomenon.  相似文献   

18.
In order to solve the problems of acceptor/donor individual doping in Li2TiO3 system and clarify the superiority mechanism of co‐doping for improving the Q value, Mg + Nb co‐doped Li2TiO3 have been designed and sintered at a medium temperature of 1260°C. The effects of each Mg/Nb ion on structure, morphology, grain‐boundary resistance and microwave dielectric properties are investigated. The substitution of (Mg1/3Nb2/3)4+ inhibits not only the diffusion of Li+ and reduction in Ti4+, but also the formation of microcracks in ceramics, which promotes the enhancement of Q value. The experiments reveal that Q × f value of Li2TiO3 ceramics co‐doped with magnesium and niobium is 113 774 GHz (at 8.573 GHz), which is increased by 113% compared with the pure Li2TiO3 ceramics. And the co‐doped ceramics have an appropriate dielectric constant of 19.01 and a near‐zero resonance frequency temperature coefficient of 13.38 ppm/°C. These results offer a scientific basis for co‐doping in Li2TiO3 system, and the outstanding performance of (Mg + Nb) co‐doped ceramics provides a solid foundation for widespread applications of microwave substrates, resonators, filters and patch antennas in modern wireless communication equipments.  相似文献   

19.
(1?x)Bi1/2Na1/2TiO3xPbMg1/3Nb2/3O3[(1?x)BNT‐xPMN] ceramics have been fabricated via a conventional solid‐state method for compositions x ≤ 0.3. The microstructure, phase structure, ferroelectric, and dielectric properties of ceramics were systematically studied as high‐temperature capacitor materials. XRD pattern certified perovskite phase with no secondary phase in all compositions. As PMN concentration increased, the phase of (1?x)BNT‐xPMN ceramics transformed from ferroelectric to relaxor gradually at room temperature, with prominent enhancement of dielectric temperature stability. For the composition x = 0.2, the temperature coefficient of capacitance (TCC) was <15% in a wide temperature range from 56 to 350°C with high relative permittivity (>3300) and low dielectric loss (<0.02) at 150°C, which indicated promising future for (1?x)BNT‐xPMN system as high‐temperature stable capacitor materials.  相似文献   

20.
Ceramic capacitors with high electrostatic energy storage performances have captured much research interest in latest years. Sodium bismuth titanate (Na0.5Bi0.5TiO3)-based ferroelectric ceramics show great potential due to their environment-friendly composition, high polarization, and excellent relaxor properties. However, the nonergodic relaxor state of Na0.5Bi0.5TiO3-based ceramics hampers the decrement of remanent polarization, leading to poor energy storage performance. Herein, the (1 − x)Na0.5Bi0.5TiO3xLa(Ni2/3Ta1/3)O3 ceramics were designed to generate the transformation between nonergodic and ergodic relaxor state. As a result, the ceramics exhibit improved dielectric relaxation, slim polarization–electric field loops, and flattened current–electric field curves due to highly dynamic polar nanoregions. Particularly, the 0.85Na0.5Bi0.5TiO3–0.15La(Ni2/3Ta1/3)O3 ceramics show large breakdown electric field Eb (345 kV/cm), high recoverable energy density Wrec (3.6 J/cm3), and efficiency η (80.6%), revealing potential applications in electrostatic energy storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号