首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
餐厨垃圾固相物料的中温厌氧消化中试研究   总被引:1,自引:0,他引:1  
采用有效容积为4 m3的全混装置,对餐厨垃圾经精细预处理后的固相物料进行了中温[(35±2)℃]厌氧消化处理中试研究,考察了进料有机负荷(OLR)及氨氮对产沼气能力、处理效果及运行稳定性的影响。结果表明,此类物料具有挥发性固体(VS)和挥发性脂肪酸(VFA)高而C/N值低的特性。其厌氧消化最佳运行工况为OLR=4.77 kg VS/(m3·d)、HRT=50 d。其容积产气率最大为2.56 m3/(m3·d),且整体稳定于1.95~2.10 m3/(m3·d),气体甲烷含量维持在60%以上,总固体(TS)去除率可达93%。在高OLR[5.97~6.86 kg VS/(m3·d)]条件下,VFA出现积累而氨氮浓度可维持相对稳定。当氨氮浓度6 000 mg/L时,系统对VFA的积累并不敏感,VS产甲烷率仍可达0.32 m3/kg VS。但当氨氮浓度上升至6 000 mg/L以上时,产甲烷微生物活性受到明显抑制。因此控制氨氮浓度6 000 mg/L是本系统稳定运行的关键。  相似文献   

2.
对单级自热式高温微好氧消化工艺进行改进,采用先短期(4 d)中温厌氧消化再高温微好氧消化的工艺处理市政污泥,分析了对污泥的稳定化效果。至第14天该工艺对挥发性有机物(VSS)的去除率为40%,达到美国环保局503条款和我国《城镇污水处理厂污染物排放标准》(GB 18918—2002)中稳定化的要求,且与高温微好氧消化达到污泥稳定的时间相同。其ORP与高温微好氧消化工艺的类似,初期呈现厌氧水解状态,处于-50 mV以下,随后逐渐上升至100 mV左右。中温厌氧/高温微好氧消化系统中产生挥发性有机酸(VFA),污泥上清液中的VFA在第11天达到最高为269 mg/L。此外,污泥上清液中的总有机碳(TOC)在第8天达到最高为5 040 mg/L。污泥消化至第30天TOC仍高达1 980 mg/L,表明污泥中存在一些难以去除的可溶性有机物。  相似文献   

3.
自主设计的搅拌内环流厌氧反应器连续运行64 d,考察了高有机浓度剩余污泥厌氧消化过程中有机物转化与生物产气之间的关系,分析了污泥流变特性的变化,并探讨了污泥消化效能和流动特征。结果表明,消化过程中平均总有机物去除率在30%以上,最高为45%,VSS含量从16. 92 g/L降低至3. 575 g/L,VFA浓度从(460. 02±0. 5) mg/L降低至(50. 20±0. 26) mg/L,且产气率迅速增加,甲烷含量高达52. 9%。污泥TSS与污泥稳态黏度呈正相关,Pearson系数为0. 816 2。在反应器消化过程中,微生物和内环流体系的作用对絮体结构和污泥成分的影响可减缓污泥流变特性(黏度和触变性)随污泥量增加而增强的趋势。  相似文献   

4.
以明胶废水为研究对象,采用微好氧与厌氧水解酸化工艺进行对比处理实验,探讨了不同水力停留时间下微好氧与厌氧水解酸化对明胶废水水质改善的效果。实验结果表明,在水力停留时间达到72h的时候,溶解氧为1.3~1.6mg/L的微好氧反应器的COD去除率最大可达25%,溶解氧为0.3~0.5mg/L的厌氧反应器的COD去除率最大可达22%;微好氧反应器的VFA的含量达到12mg/L左右,厌氧反应器只有8mg/L左右;微好氧反应器的pH值可由最初的12.5降至7.5左右,而厌氧反应器只能降至8.0左右;两个反应器对蛋白质去除效果的差别并不明显,都可以达到90%以上,但是微好氧反应器的氨氮浓度只有22mg/L,小于厌氧反应器中的氨氮浓度,说明微氧条件有利于氨氮的扩散挥发,低浓度的氨氮对微生物的危害较小。对比得出微好氧反应器的出水水质较好,更适合明胶废水水解酸化的预处理。  相似文献   

5.
采用内循环厌氧反应器(IC)-氧化沟工艺处理某豆制品厂2 000 m3/d的豆制品废水。工程实践表明,系统总的COD去除率达98.3%,出水水质满足《污水综合排放标准》(GB8978—1996)的一级排放标准。其中IC反应器出水COD350 mg/L,COD去除率91%,同时在进水氨氮浓度约为25 mg/L时,由于厌氧氨化作用,出水氨氮浓度达到50 mg/L以上,氨氮增加率达到120%。  相似文献   

6.
剩余污泥含水率对中温固态厌氧消化的影响   总被引:1,自引:0,他引:1  
污泥厌氧消化是污泥资源化利用的重要途径,但传统的液态厌氧消化会产生大量处理成本较高的沼液,固态厌氧消化则能克服这个缺点。以脱水后的剩余污泥为原料,并用秸秆调节碳氮比,研究了中温(35℃)条件下含水率(65%~85%)对固态厌氧消化的影响。结果表明,消化初期产生高浓度的挥发性脂肪酸(VFA),并导致初期p H值迅速下降至5.5~6.2,VFA浓度和含水率呈正相关。含水率越高,反应启动越快,反应周期越短。当含水率为70%~80%时,VS的降解率达到56.0%~58.3%,甲烷产率为452.9~459.5 m L/g。因此,对于污泥的中温固态厌氧消化,适宜的含水率为70%~80%。  相似文献   

7.
采用超声强化NaCl对天然沸石进行改性,考察了改性沸石对氨氮的吸附去除特性。结果表明,在超声功率为560 W、改性时间为40 min、NaCl浓度为0.8 mol/L的条件下制备的改性沸石对氨氮的去除效果最佳;在氨氮初始浓度为10 mg/L、改性沸石投加量为5 g/L的条件下,吸附40 min后改性沸石对氨氮的去除率可达到86.9%,120 min后达到吸附平衡,此时对氨氮的去除率为91.11%,相比天然沸石提高了86.3%;准二级反应动力学模型可以较好地描述改性沸石的吸附行为,R2=0.991;改性沸石对氨氮的吸附符合Langmuir模型(R2=0.961 2),其最大吸附量可达到12.56 mg/g。  相似文献   

8.
餐厨垃圾和城市污泥是两种不同来源的有机固废,为提高这两种有机固废的协同厌氧消化效率,添加了来自机械加工厂的废弃物铁刨花,考察其对有机固废厌氧消化产甲烷和产气量的影响。结果表明:随着铁刨花投加量的增大,进入稳定产甲烷阶段所需时间缩短。当铁刨花投加量为25 g/L时,最高甲烷浓度、最高日产气量、累积产气量比对照组分别提高了33%、74%、120%,氨氮浓度在第15天比对照组降低了21%。在原有消化条件下,投加适量铁刨花有助于提高产气效果,增强系统运行的稳定性。  相似文献   

9.
pH值对餐厨垃圾厌氧产酸的影响   总被引:1,自引:0,他引:1  
通过间歇试验研究了中温条件下pH值对餐厨垃圾厌氧发酵产酸的影响。考察了pH值为5、6、7及不控制pH值下的有机酸浓度、SCOD溶出量、对VS的去除率及产气情况。结果表明,当控制pH值为6时,餐厨垃圾的水解酸化效果最好,发酵液中的VFA浓度最高,达到37.60g/L。对VS的去除率在pH值为6和7时最高,分别为64.8%和64.5%。氨氮浓度在pH值为6和7时均达到2 140 mg/L,而在更低pH值时则维持在600~700 mg/L之间。pH值为6时SCOD浓度达到85 g/L,其中VFA占SCOD的72.8%;气体产量为118.9 mL/gVS,主要成分为氢气和二氧化碳,其中氢气占40.1%,二氧化碳占50.0%。  相似文献   

10.
依托市政污泥与餐厨废弃物协同处理工程,考察了物料比对市政污泥与餐厨废弃物协同厌氧消化效果的影响。结果表明,在不同物料比下,厌氧消化液的酸碱比(VFA/ALK)保持在0. 10~0. 12,挥发性脂肪酸(VFA)维持在1 093~1 529 mg/L,碱度(ALK)维持在10 321~13 688mg/L,厌氧消化系统处于稳定状态;随着餐厨废弃物比例的增加,VS降解率和VS添加产气率呈增加趋势,当污泥与餐厨废弃物的比例为1∶2时,两者协同厌氧消化效果最好,此时VS降解率达到79. 4%,VS添加产气率为0. 56 m^3/(kgVS·d),沼气中的甲烷含量达到61. 4%,H2S产量为77. 4mg/m^3;污泥与餐厨废弃物的协同处理有利于减少沼气中的H2S含量。  相似文献   

11.
微生物燃料电池阳极氨损失机理研究   总被引:1,自引:0,他引:1  
构建质子交换膜双室微生物燃料电池,探究氨氮在厌氧阳极室的损失机理。结果表明:阳极初始氨氮浓度由15.42 mg/L增加到65.28 mg/L时,电压峰值由33.1 m V增加到96.3m V,氨氮可以作为MFC阳极基质;当同时添加亚硝态氮后,氨氮降解速率加快,因此推断有厌氧氨氧化作用发生。当氨氮由35.35 mg/L降到4.71 mg/L时,至少35.64%的氨氮在微生物作用下发生了好氧氨氧化而转化为硝态氮和亚硝态氮;2.12%氨氮透过质子交换膜进入阴极;阳极p H值维持在7.10±0.10,可能部分氨氮的损失是由于在偏碱性环境下,离子态氨氮转化为氨气挥发所致。  相似文献   

12.
序批式生物膜反应器对猪场沼液脱氮的中试研究   总被引:1,自引:0,他引:1  
采用序批式生物膜反应器(SBBR)处理低碳氮比的猪场沼液,考察了其脱氮效果。结果表明,当猪场沼液的氨氮为200~450 mg/L、平均C/N值为0.91时,SBBR工艺对氨氮的去除率可达75%左右,出水氨氮大部分低于80 mg/L,基本达到了《畜禽养殖业污染物排放标准》(GB18596—2001)的要求。根据氨氮的降解途径推断,在SBBR中存在短程硝化-厌氧氨氧化过程。  相似文献   

13.
两级A/O-Fenton-BAF工艺处理垃圾渗滤液   总被引:1,自引:1,他引:0  
针对垃圾渗滤液的水质特征,采用厌氧折流板反应器/一级好氧/接触厌氧/二级好氧/Fenton氧化/曝气生物滤池工艺处理垃圾渗滤液.原水COD约为1 300 mg/L,氨氮约为300mg/L,运行结果表明,该工艺运行稳定,系统对COD的去除率达到93%,对氨氮的去除率达到98%,出水COD<100 mg/L、氨氮<25 mg/L、色度<40倍、悬浮物<30 mg/L,达到<生活垃圾填埋场污染控制标准>(GB 16889-2008)中表2的排放标准.  相似文献   

14.
SDS和SDBS强化污泥水解的实验研究   总被引:1,自引:0,他引:1  
在污泥中投加2种表面活性剂SDS和SDBS进行预处理,从COD溶出率、溶解性糖类和蛋白质3个方面对预处理后污泥的性质进行了研究。结果表明,二者的加入极大地促进了污泥的水解,低剂量范围时SCOD随投加剂量增加而显著升高,投加剂量在50 mg/g dw以上时SCOD增幅不明显。SCOD分别由初始时的638.5 mg/L最高上升到6 446.8 mg/L(SDBS)和4 857.2 mg/L(SDS),溶出率分别由初始时的5.8%最高上升到37.3%(SDBS)和30.2%(SDS)。在0~150 mg/g dw剂量范围内,溶解性糖类和蛋白质随两者投加剂量增加呈线性升高趋势,溶解性糖类分别由初始时的3.54 mg/L最高上升到95.56 mg/L(SDBS)和64.20 mg/L(SDS)。溶解性蛋白质分别由初始时的11.72 mg/L最高上升到706.30 mg/L(SDBS)和541.08 mg/L(SDS)。氨氮和VFA浓度也随投加量升高,氨氮浓度分别由初始时的4.21 mg/L最高上升到130.33 mg/L(SDBS)和102.74 mg/L(SDS);VFA浓度分别由初始时的21.27 mg/L最高上升到358.30 mg/L(SDBS)和283.12 mg/L(SDS)。  相似文献   

15.
为了探究橙皮精油(EO)对橙渣与剩余污泥厌氧共消化系统的毒性,通过改变共消化底物中EO含量,研究其对厌氧共消化系统比产甲烷活性的影响及毒性抑制作用。结果表明,当EO为550和750 mg/kg时,其对厌氧发酵系统具有一定的促进作用,累积产气量较对照组分别提高了16.8%和21.1%;当EO为950和1 150 mg/kg时,厌氧共消化系统分别受到轻度抑制和中度抑制,其累积产气量较对照组分别降低了39.1%和49.9%;当EO为1 350 mg/kg时,厌氧共消化系统受到严重抑制,比产甲烷活性比对照组降低了98.4%,产气量几乎为0。毒性恢复实验表明,高含量EO(1 150和1 350 mg/kg)对厌氧共消化系统的微生物产生了生理毒素,辅酶F_(420)含量显著降低,导致系统产甲烷活性受到严重抑制。  相似文献   

16.
短程硝化/厌氧氨氧化/全程硝化工艺处理焦化废水   总被引:1,自引:0,他引:1  
通过对短程硝化和厌氧氨氧化工艺的研究,开发了短程硝化/厌氧氨氧化/全程硝化(O1/A/O2)生物脱氮新工艺并用于焦化废水的处理.控制温度为(35±1)℃、DO为2.0~3.0mg/L,第一级好氧连续流生物膜反应器在去除大部分有机污染物的同时还实现了短程硝化.考察了HRT、DO和容积负荷对反应器运行效果的影响.结果表明,当氨氮容积负荷为0.13~0.22gNH4+-N/(L·d)时,连续流反应器能实现短程硝化并有效去除氨氮.通过控制一级好氧反应器的工艺参数,为厌氧反应器实现厌氧氨氧化(ANAMMOX)创造条件.结果表明,在温度为34℃、pH值为7.5~8.5、HRT为33 h的条件下,经过115 d成功启动了厌氧氨氧化反应器.在进水氨氮、亚硝态氮浓度分别为80和90 mg/L左右、总氮负荷为160 mg/(L·d)时,对氨氮和亚硝态氮的去除率最高分别达86%和98%,对总氮的去除率为75%.最后在二级好氧反应器实现氨氮的全程硝化,进一步去除焦化废水中残留的氨氯、亚硝态氮和有机物.O1/A/O2工艺能有效去除焦化废水中的氨氮和有机物等污染物,正常运行条件下的出水氨氮<15 mg/L、亚硝态氮<1.0 mg/L,COD降至124~186 mg/L,出水水质优于A/O生物脱氮工艺的出水水质.  相似文献   

17.
采用EGSB厌氧反应器处理某生活垃圾焚烧厂垃圾渗滤液,设计处理能力为200m3/d,容积负荷为11.2 kg/(m3·d),单个反应器尺寸为9 m×25 m。运行数据表明,EGSB处理生活垃圾焚烧厂渗滤液具有很强的耐冲击负荷能力,运行过程中实际处理水量为50~305 m3/d、COD容积负荷为2~17.6 kg/(m3·d)、ALK为7 500~14 000 mg/L、VFA最高为7 284 mg/L、VFA/ALK为0.01~0.55,系统出水p H值7.7,COD去除率均较为稳定(80%~95%),出水COD稳定在1 500~2 000 mg/L。沼气产率为0.4~0.5 m3/kg COD,沼气中甲烷含量为71%~78%。  相似文献   

18.
通过批次和连续流试验分析了厌氧生物法对聚丙烯酸酯浆料废水的处理效果。批次试验结果表明,当水样稀释40倍(COD浓度为3 980 mg/L)时,对COD的去除率最高,为37.89%,甲烷产率最大,为118.98 m L/g COD。利用螺旋对称流厌氧反应器运行的连续流试验结果表明,在进水COD为4 000 mg/L左右、水力停留时间为3 d、中温(38℃)条件下,COD去除率维持在50%左右,出水p H值在8左右,B/C值由0.086升高至0.312。然而,出水氨氮浓度却由进水时的332.11 mg/L升高至2 189.26 mg/L,后续处理过程应考虑对高浓度氨氮废水的处理。  相似文献   

19.
为了有效回用城市污泥深度脱水产生的大量水解压滤液,分析了实际工程运行的厌氧消化系统的p H值、VFA和碱度等工艺参数和产气量的关系,并研究了该系统对COD、NH3-N和TP的去除能力。研究结果表明:水解压滤液产气率较高,系统稳定后每去除1 kg COD可以产生0.19 m3的沼气;进出水p H值变化范围在7.0~7.4之间,适合厌氧菌正常的生理活动条件,进出水VFA值低于850 mg/L会影响产气效果,进出水碱度控制在2 300~3 000 mg Ca CO3/L之间能有效维持酸碱平衡;系统对COD和TP的去除效果远优于脱氮效果,去除率最高可达63%、67%,出水COD、TP浓度均达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)的二级标准。城市污泥水解压滤液大部分都能直接回用,这为推流式厌氧消化工程实践提供了有力的科学依据。  相似文献   

20.
采用间歇膨胀复合厌氧/A-O-SBR工艺处理高浓度制药废水,在进水有机负荷为2.134~11.488 kgCOD/(m3.d)、pH值为4.5~6的常温条件下,厌氧反应器COD去除率>70%,容积负荷可达到9.075 kgCOD/(m3.d)。厌氧出水经A-O-SBR及混凝气浮处理后,出水COD、氨氮、总磷、pH值分别为130 mg/L、4.4 mg/L、2.39 mg/L、7.8,完全满足企业所在地的纳管排放要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号