首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 281 毫秒
1.
热固性浇注 PBX 力学行为的影响因素探讨   总被引:1,自引:0,他引:1  
利用拉伸实验、压缩实验、巴西实验对浇注黏结炸药(PBX)的力学行为进行了研究,探讨了影响浇注PBX 力学行为的因素。实验结果表明,浇注 PBX 的力学行为分为脆性断裂和延性断裂两种形式;在固化阶段的不同时间点浇注 PBX 的力学行为不同,当固化度为70%--80%时,浇注 PBX 表现出延性断裂的特征;当浇注 PBX 的固化度在80%以上时,药柱的力学行为受到固化温度和胶黏剂分子量等的影响。对于含有同一分子量端羟基聚丁二烯(HTPB)的浇注 PBX,固化温度越高,其力学行为越趋近于脆性断裂特征;经同一固化温度后,HTPB分子量越小,浇注 PBX 的力学行为越趋近于脆性断裂的特征。对产生上述现象的原因进行了分析。  相似文献   

2.
为了使浇注塑料黏结炸药(PBX)具有均匀的固化温度场,采用COMSOL Multiphysics软件和Fourier数学模型,分别模拟研究了模具尺寸、烘箱与PBX间的温差、PBX固化速率等因素对PBX温度场分布的影响。结果表明:药浆温度低于烘箱温度时,浇注PBX内的温度场呈现由外向里递减的趋势。60 mm×240 mm、100 mm×240 mm、200 mm×240 mm和200 mm×1 000 mm,壁厚都为5 mm的模具,从25℃升至60℃的过程中,模具边缘和中心点的最大温差可分别达到3.22、6.66、10.49℃和13.08℃。200 mm×1 000 mm,壁厚为5 mm的模具分别从0、25、40、50℃升至60℃时,模具边缘和中心点的最大温差可分别达到17.56、13.08、7.02℃和3.36℃。药浆温度与烘箱温度相同时,模具边缘温度最小,中心温度最高,此时影响温度场梯度的主要因素为药浆固化速率的大小。当药浆和烘箱间存在温差,可通过减小模具尺寸、降低浇注PBX内的温度梯度,且浇注PBX的固化尽量采取药浆与烘箱温度一致的固化工艺,此时选择固化速率较小的药浆可实现PBX内的温度基本一致。  相似文献   

3.
席鹏  孙培培  郑亚峰  南海  潘文 《爆破器材》2021,50(2):41-44,49
采用定应变压缩试验研究了准静态压缩条件下浇注PBX炸药(浇注型高聚物黏结炸药)的力学行为,测试了典型浇注炸药PBX-1在损伤前、后的性能,获得了炸药的真应力-应变曲线。试验结果表明,浇注PBX炸药在准静态压缩条件下的力学行为分为接触压缩、弹性变形、损伤破坏和应变软化4个阶段。在压缩应变不超过损伤应变时,PBX-1炸药主要以弹性变形为主,屈服强度和屈服应变没有发生明显改变;在压缩应变超过损伤应变后,炸药中黏结剂断裂,颗粒脱黏,发生塑性变形。压缩应变增加至8%后,PBX-1炸药密度降低,残余应变增大;PBX-1炸药的屈服强度为0.6 MPa,屈服应变为10.6%,损伤应变为8%,炸药的损伤应变可以作为强度校核的依据。  相似文献   

4.
利用分离式霍普金森压杆(SHPB)技术研究了HTPB/AP基浇注PBX炸药70 ℃下的老化性能和在不同应变率、不同老化时间、不同温度下的动态力学性能;同时,运用扫描电子显微镜分析了炸药在高应变力下的微观损伤结构。结果表明,高应变率下的应力应变大于低应变率下,应力应变具有应变率效应;随着老化时间的增加,高温试验条件下,浇注PBX炸药的失效应变从0.364减小到0.343,失效应变逐渐减小;低温试验条件下,浇注PBX炸药的失效应变在0到56 d时从0.32增加到0.34,之后基本保持不变。同时,微观、宏观损伤模式表明,界面脱黏和晶粒破碎两种损伤模式并存,应变率越高,晶粒的破碎作用越明显。  相似文献   

5.
为改善高固含量高聚物黏结炸药(PBX)和丁羟推进剂的工艺性能,以低分子量的端羟基聚丁二烯(HTPB)、异佛尔酮二异氰酸酯(IPDI)为主要原料,选用一缩二乙二醇(DEG)为扩链剂,采用二步法制备了聚氨酯弹性体。研究了催化剂用量对浆料黏度的影响,固化参数R及扩链剂用量对HTPB聚氨酯弹性体力学性能的影响。试验结果表明,当催化剂质量分数为0.004%时,适用期可达5 h;R值为1.1,DEG羟基含量占反应总羟基量的60%时,聚氨酯弹性体力学性能较好,拉伸强度达7.60 MPa,断裂伸长率达540.21%。动态力学分析(DMA)测试结果显示,低分子量HTPB聚氨酯弹性体有两个明显的玻璃化转变温度,说明样品存在明显的微相分离结构。  相似文献   

6.
基于有限元分析方法,对热压罐成型卫星贮箱安装板复合材料蒙皮热应力工艺设计方案进行仿真分析,研究了预浸料铺层区域、均压板结构、固化温度等工艺参数对蒙皮热应力的影响。结果表明,在均压板开孔结构不变,当预浸料铺层方法从整体铺层转变为开孔铺层,最大压缩热应力为-393.7MPa,增加了3.8%;最大拉伸热应力为87.9MPa,降低了62.9%。保持均压板开孔结构-预浸料开孔铺层不变,当固化最高温度从180℃降低到120℃,最大压缩热应力为-250.5MPa,最大拉伸热应力为55.9MPa,最大压缩应力和拉伸应力均降低了36.3%。降低固化温度显著降低热应力,并通过实验验证了分析结果。  相似文献   

7.
浇注PBX(塑料粘结炸药)中的缺陷对其安全性有巨大影响。对热固性浇注PBX在固化过程中形成的几种缺陷形式进行了总结,包括力学性能不均一、气泡、变形及开裂。并对其形成的原因和控制措施进行了分析,组分间密度差过大和固化升温阶段温度场的存在是形成力学梯度的主要原因,真空度低是形成气泡的主要原因,固化过程的交联收缩和降温阶段的冷缩是PBX变形的主要原因。  相似文献   

8.
分析了受约束机构内材料热应力存在的危害,给出静不定结构内热应力的定量描述方式:弹性变形状态时,热应力仅与线膨胀系数、弹性模量及温度变量成正比关系;当热应力达到材料在某温度下的屈服强度时,其热膨胀发生弹塑性转变,热应力为当时温度下的屈服强度。采用热模拟试验机测试了材料的温度与热应力关系,分析结果与数值模型基本吻合,测出刚性约束下45钢在升温至620℃时热应力等于其屈服强度约200 MPa。  相似文献   

9.
以端氨基树枝状大分子PAMAM作为环氧树脂固化剂, 通过拉伸试验、 冲击试验、 DSC、 TGA研究了配比和固化温度对PAMAM与环氧树脂E-44的固化物性能的影响。 结果表明, 最佳固化温度为140℃, 但随着固化温度升高, 配比的影响表现出不同的规律: 80℃固化时, 最佳配比为0.47, 此时拉伸强度和冲击强度最佳, 玻璃化转变温度最高, 交联密度最大; 而在80℃以上固化时, 最佳配比逐渐向低配比方向移动, 140℃固化时, 最佳配比为0.28, 此时拉伸强度和冲击强度最佳, 玻璃化转变温度最高, 交联密度最大。固化物的密度和体积收缩率都是配比为0.47时最大, 而热稳定性都是配比为0.28时最佳。利用滴定法测定了固化物的固化度, 结果表明, 随着固化温度的升高, 低配比体系的固化度迅速提高并接近化学计量点配比体系的固化度。   相似文献   

10.
采用双酚A型邻苯二甲腈预聚树脂(BAPh-P)改性聚(间二乙炔基苯-二甲基硅烷)树脂(PDMP)制备了双酚A型邻苯二甲腈/聚(间二乙炔基苯-二甲基硅烷)树脂(PBA),利用DSC、FTIR、流变分析、TGA等技术分析其固化行为、黏度以及耐热性变化。结果表明,PBA树脂固化峰值温度较PDMP升高;固化反应主要为炔基的Diels-Alder和加成反应、氰基进一步交联生成三嗪环和酞菁环等结构反应;BAPh-P的加入提升了PDMP在空气下的耐热性,PBA-1(PDMP:BAPh-P质量比为5∶1)树脂固化物在N2和空气氛围质量损失5%的温度(Td5)分别为640.6℃和591℃,1000℃质量保留率为89.0%和26.9%;随着BAPh-P质量增加,PBA树脂固化物Td5呈下降趋势,但空气中Td5均高于PDMP;石英纤维增强PBA树脂基(QF/PBA)复合材料随BAPh-P质量增加室温弯曲强度逐渐升高,高温弯曲强度先升高后降低;其中QF/PBA-2复合材料室温和400℃弯曲强度分别为363 MPa和330 MPa,较PDMP分别提升91%和214%,室温和400℃的层间剪切强度(ILSS)分别为37.5 MPa和22.2 MPa。   相似文献   

11.
将光固化成型和凝胶注模技术相结合成形涡轮叶片陶瓷型芯,克服了熔模铸造中陶瓷型芯制备周期长、成本高、响应慢等不足,对新型复杂结构单晶叶片的快速研制具有重要意义。研究氧化硅基陶瓷型芯的高温强度和收缩率演变规律,探究了纳米氧化锆和铝粉的添加量以及烧结时间对其影响。通过场发射扫描电镜对样件的微观形貌进行表征,采用三点抗弯法测试了样件的高温强度。结果表明:当纳米氧化锆质量分数为2.16%、铝粉质量分数为9.8%、烧结时间为3.9 h时,氧化硅基陶瓷型芯的高温强度达到14.3 MPa,满足单晶叶片定向凝固铸造需求。制备的陶瓷型芯表面无明显裂纹,结构完整,成型质量较好。  相似文献   

12.
目的通过真空增压工艺改善Mg-Y-Nd-Gd-Zn-Zr合金的铸造性能和力学性能。方法采用螺旋法、热裂环法、线收缩率测试方法,分别测试了不同真空度、浇注温度、凝固压力下合金的流动性、热裂倾向和收缩率。采用万能拉伸机测试合金的力学性能,采用金相显微镜观察合金的显微组织,采用截线法测量平均晶粒尺寸。结果重力下Mg-Y-Nd-Gd-Zn-Zr合金的螺旋长度为240~270 mm,裂环宽度为10~15 mm;真空下的螺旋长度为245~330 mm,裂环宽度为7.5~12.5 mm;凝固压力从0.2 MPa提升至0.8 MPa,合金的抗拉强度从320 MPa提升至335 MPa,断后伸长率从4.5%提升至6.0%。结论提高真空度、浇注温度,可显著提升合金的充型能力;提高凝固压力、降低浇注温度,可明显降低合金的热裂倾向;凝固压力越高、真空压力转换时间越短,合金的组织越致密,力学性能越高。  相似文献   

13.
张灏  杨继萍  陈功  李红  苏航 《复合材料学报》2018,35(11):2935-2941
在丙烯酸酯体系中加入填料酚酞基聚芳醚酮(PEKC),通过紫外光(UV)固化交联制备出可快速固化且耐超低温(液氮)的PEKC/丙烯酸酯体系,通过考察PEKC/丙烯酸酯体系的凝胶率及固化收缩率,确定了其在UV固化下的交联程度及固化收缩状况;通过动态热机械分析表征了PEKC/丙烯酸酯体系的线性热膨胀系数(α),研究了其在温度变化下的尺寸稳定性;测试并比较了PEKC/丙烯酸酯体系在超低温及室温下的剪切强度,表征了其耐超低温性能。结果表明,PEKC与丙烯酸酯质量比为0~4%的PEKC/丙烯酸酯体系可以实现快速固化,固化5 s后树脂的凝胶率可达80%以上。随着PEKC/丙烯酸酯中PEKC质量比从0增加到4%,固化后PEKC/丙烯酸酯体系在-150~50℃温度范围的线性热膨胀系数由6.71×10-5-1降低至5.29×10-5-1,体收缩率由25.61%降低至6.24%,线收缩率由1.78%降低至0.41%,而其断裂延伸率逐渐提高,韧性增强。研究发现,PEKC/丙烯酸酯复配体系的室温拉伸强度都在20 MPa以上,PEKC与丙烯酸酯质量比为3%的PEKC/丙烯酸酯体系铝-玻璃搭接在室温和液氮温度下的拉伸剪切强度分别可达17.48 MPa和17.23 MPa。  相似文献   

14.
以不同环氧官能团数量的环氧树脂和不同添加量的固化剂为原料制备了导电胶,通过红外光谱、扫描电子显微镜等手段测试其结构和性能。结果表明,拉伸剪切强度随环氧官能团数目的增加而降低,其中双官能团的环氧树脂DER331所对应的树脂基体和导电胶的拉伸剪切强度最大,树脂基体为31MPa,导电胶为9MPa;随固化剂添加量的增加而增加,当环氧树脂和固化剂质量比为25∶7时,树脂基体为32MPa,导电胶为10MPa;与树脂基体的固化收缩率呈反比关系。  相似文献   

15.
以端羟基聚丁二烯(HTPB)、聚四氢呋喃醚二醇(PTMEG)和2,4-甲苯二异氰酸酯(TDI-100)为原料,二甲硫基甲苯二胺(DADMT)为扩链剂,制得聚氨酯弹性体(PUE)。采用力学性能测试、差示扫描量热(DSC)、动态力学分析(DMA)及热重分析(TG)研究了HTPB/PTMEG比值、HTPB相对分子质量对PUE性能的影响。结果表明,HTPB(羟值0.836mmol/g)/PTMEG质量比为1∶4时,PUE力学性能最佳,拉伸强度30.3MPa,撕裂强度99.8kN/m;PU0(0.8)的tanδ峰位于-56.2℃,0℃以后,tanδ值低于0.08,说明丁羟型PUE比PTMEG型具有更好的动态性能,且HTPB分子量高,动态性能好;丁羟型PUE具有更高的热稳定性。  相似文献   

16.
本工作以石英玻璃粉作为基体材料, 白刚玉粉作为矿化剂, 金属Al粉作为添加剂, 制备了氧化硅基陶瓷型芯。研究了不同含量金属Al粉对氧化硅基陶瓷型芯收缩率、物理性能、显微组织和相组成的影响。研究结果表明, 在型芯烧结过程中, 金属Al粉受热氧化形成Al2O3, 伴随着体积膨胀和重量增加, 可以抑制陶瓷型芯的烧结收缩和铸造收缩。Al粉对烧结过程中的方石英析晶无明显抑制作用, 铸造过程中由于型芯骨架结构的松散程度增加, 型芯的高温抗变形能力降低。当铝粉含量为1wt%时, 陶瓷型芯综合性能良好, 三维方向的烧结收缩率分别为0.01%、0.03%、0.03%, 气孔率为28.58%, 挠度为0.57 mm, 抗弯强度为12.1 MPa。制备的陶瓷型芯能够满足高温合金定向凝固需求, 并有望能提高空心涡轮叶片的内腔尺寸精度。  相似文献   

17.
为了准确表征固化后期热固性粘结炸药(PBX)的固化特性,以确定PBX的固化终点时间。采用力学实验机测试获得PBX在不同固化时间的力-位移曲线,确定50N加载力为其最大载荷加载。结果表明:固化测试头的直径为10mm,加载速率为1mm/min时,测试获得的力-位移曲线较为平直,测试后样品结构完整,可进行下一次测试。力-位移测试方法获得的固化特性数据偏差远远小于硬度计法,可作为热固性PBX固化特性准确的测试研究方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号