首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper we present a novel method for high‐quality rendering of scenes with participating media. Our technique is based on instant radiosity, which is used to approximate indirect illumination between surfaces by gathering light from a set of virtual point lights (VPLs). It has been shown that this principle can be applied to participating media as well, so that the combined single scattering contribution of VPLs within the medium yields full multiple scattering. As in the surface case, VPL methods for participating media are prone to singularities, which appear as bright “splotches” in the image. These artifacts are usually countered by clamping the VPLs' contribution, but this leads to energy loss within the short‐distance light transport. Bias compensation recovers the missing energy, but previous approaches are prohibitively costly. We investigate VPL‐based methods for rendering scenes with participating media, and propose a novel and efficient approximate bias compensation technique. We evaluate our technique using various test scenes, showing it to be visually indistinguishable from ground truth.  相似文献   

2.
Glossy to glossy reflections are lights bounced between glossy surfaces. Such directional light transports are important for humans to perceive glossy materials, but difficult to simulate. This paper proposes a new method for rendering screen‐space glossy to glossy reflections in realtime. We use spherical von Mises‐Fisher (vMF) distributions to model glossy BRDFs at surfaces, and employ screen space directional occlusion (SSDO) rendering framework to trace indirect light transports bounced in the screen space. As our main contributions, we derive a new parameterization of vMF distribution so as to convert the non‐linear fit of multiple vMF distributions into a linear sum in the new space. Then, we present a new linear filtering technique to build MIP‐maps on glossy BRDFs, which allows us to create filtered radiance transfer functions at runtime, and efficiently estimate indirect glossy to glossy reflections. We demonstrate our method in a realtime application for rendering scenes with dynamic glossy objects. Compared with screen space directional occlusion, our approach only requires one extra texture and has a negligible overhead, 3% ~ 6% loss at frame rate, but enables glossy to glossy reflections.  相似文献   

3.
This paper introduces a framework that can extract an alpha matte from a single image with Fresnel reflection, and that can composite other objects with the image such that plausible reflections are included. Our method handles reflections in a plane with small undulations, for example, a water surface with waves or a glossy tabletop. During the matting stage, our method first estimates the transmission color, which is assumed to be uniform, and then calculates a reflection image and alpha matte based on user markups. However, accurate extraction of the matte becomes challenging when a plane has small undulations because these create perturbations in the matte. We therefore propose a filter that can refine the matte effectively. In the compositing stage, the reflection of a composited object is synthesized by ray tracing in real time. We demonstrate the effectiveness of our method through comparisons with ground‐truth data and results using natural images as inputs.  相似文献   

4.
We present a novel framework for efficiently computing the indirect illumination in diffuse and moderately glossy scenes using density estimation techniques. Many existing global illumination approaches either quickly compute an overly approximate solution or perform an orders of magnitude slower computation to obtain high-quality results for the indirect illumination. The proposed method improves photon density estimation and leads to significantly better visual quality in particular for complex geometry, while only slightly increasing the computation time. We perform direct splatting of photon rays, which allows us to use simpler search data structures. Since our density estimation is carried out in ray space rather than on surfaces, as in the commonly used photon mapping algorithm, the results are more robust against geometrically incurred sources of bias. This holds also in combination with final gathering where photon mapping often overestimates the illumination near concave geometric features. In addition, we show that our photon splatting technique can be extended to handle moderately glossy surfaces and can be combined with traditional irradiance caching for sparse sampling and filtering in image space.  相似文献   

5.
We introduce a set of robust importance sampling techniques which allow efficient calculation of direct and indirect lighting from arbitrary light sources in both homogeneous and heterogeneous media. We show how to distribute samples along a ray proportionally to the incoming radiance for point and area lights. In heterogeneous media, we decouple ray marching from light calculations by computing a representation of the transmittance function that can be quickly evaluated during sampling, at the cost of a small amount of bias. This representation also allows the calculation of another probability density function which can direct samples to regions most likely to scatter light. These techniques are orthogonal and can be combined via multiple importance sampling to further reduce variance. Our method has very modest per‐ray memory requirements and does not require any preprocessing, making it simple to integrate into production ray tracing based renderers.  相似文献   

6.
In this paper we present a novel approach to simulate image formation for a wide range of real world lenses in the Monte Carlo ray tracing framework. Our approach sidesteps the overhead of tracing rays through a system of lenses and requires no tabulation. To this end we first improve the precision of polynomial optics to closely match ground‐truth ray tracing. Second, we show how the Jacobian of the optical system enables efficient importance sampling, which is crucial for difficult paths such as sampling the aperture which is hidden behind lenses on both sides. Our results show that this yields converged images significantly faster than previous methods and accurately renders complex lens systems with negligible overhead compared to simple models, e.g. the thin lens model. We demonstrate the practicality of our method by incorporating it into a bidirectional path tracing framework and show how it can provide information needed for sophisticated light transport algorithms.  相似文献   

7.
Due to the intricate nature of the equation governing light transport in participating media, accurately and efficiently simulating radiative energy transfer remains very challenging in spite of its broad range of applications. As an alternative to traditional numerical estimation methods such as ray‐marching and volume‐slicing, a few analytical approaches to solving single scattering have been proposed but current techniques are limited to the assumption of isotropy, rely on simplifying approximations and/or require substantial numerical precomputation and storage. In this paper, we present the very first closed‐form solution to the air‐light integral in homogeneous media for general 1‐D anisotropic phase functions and punctual light sources. By addressing an open problem in the overall light transport literature, this novel theoretical result enables the analytical computation of exact solutions to complex scattering phenomena while achieving semi‐interactive performance on graphics hardware for several common scattering modes.  相似文献   

8.
Many‐light methods approximate the light transport in a scene by computing the direct illumination from many virtual point light sources (VPLs), and render low‐noise images covering a wide range of performance and quality goals. However, they are very inefficient at representing glossy light transport. This is because a VPL on a glossy surface illuminates a small fraction of the scene only, and a tremendous number of VPLs might be necessary to render acceptable images. In this paper, we introduce Rich‐VPLs which, in contrast to standard VPLs, represent a multitude of light paths and thus have a more widespread emission profile on glossy surfaces and in scenes with multiple primary light sources. By this, a single Rich‐VPL contributes to larger portions of a scene with negligible additional shading cost. Our second contribution is a placement strategy for (Rich‐)VPLs proportional to sensor importance times radiance. Although both Rich‐VPLs and improved placement can be used individually, they complement each other ideally and share interim computation. Furthermore, both complement existing many‐light methods, e.g. Lightcuts or the Virtual Spherical Lights method, and can improve their efficiency as well as their application for scenes with glossy materials and many primary light sources.  相似文献   

9.
Recent work in interactive global illumination addresses diffuse and moderately glossy indirect lighting effects, but high‐frequency effects such as multi‐bounce reflections on highly glossy surfaces are often ignored. Accurately simulating such effects is important to convey the realistic appearance of materials such as chrome and shiny metal. In this paper, we present an efficient method for visualizing multi‐bounce glossy reflections at interactive rates under environment lighting. Our main contribution is a pre‐computation–based method which efficiently gathers subsequent highly glossy reflection passes modelled with a non‐linear transfer function representation based on the von Mises–Fisher distribution. We show that our gathering method is superior to scattered sampling. To exploit the sparsity of the pre‐computed data, we apply perfect spatial hashing. As a result, we are able to visualize multi‐bounce glossy reflections at interactive rates at a low pre‐computation cost.  相似文献   

10.
We present a practical real‐time approach for rendering lens‐flare effects. While previous work employed costly ray tracing or complex polynomial expressions, we present a coarser, but also significantly faster solution. Our method is based on a first‐order approximation of the ray transfer in an optical system, which allows us to derive a matrix that maps lens flare‐producing light rays directly to the sensor. The resulting approach is easy to implement and produces physically‐plausible images at high framerates on standard off‐the‐shelf graphics hardware.  相似文献   

11.
Existing algorithms can efficiently render refractive objects of constant refractive index. For a medium with a continuously varying index of refraction, most algorithms use the ray equation of geometric optics to compute piecewise‐linear approximations of the non‐linear rays. By assuming a constant refractive index within each tracing step, these methods often need a large number of small steps to generate satisfactory images. In this paper, we present a new approach for tracing non‐constant, refractive media based on the ray equations of gradient‐index optics. We show that in a medium of constant index gradient, the ray equation has a closed‐form solution, and the intersection point between a ray and the medium boundaries can be efficiently computed using the bisection method. For general non‐constant media, we model the refractive index as a piecewise‐linear function and render the refraction by tracing the tetrahedron‐based representation of the media. Our algorithm can be easily combined with existing rendering algorithms such as photon mapping to generate complex refractive caustics at interactive frame rates. We also derive analytic ray formulations for tracing mirages – a special gradient‐index optical phenomenon.  相似文献   

12.
We present a novel algorithm, IlluminationCut, for rendering images using the many‐lights framework. It handles any light source that can be approximated with virtual point lights (VPLs) as well as highly glossy materials. The algorithm extends the Multidimensional Lightcuts technique by effectively creating an illumination‐aware clustering of the product‐space of the set of points to be shaded and the set of VPLs. Additionally, the number of visibility queries for each product‐space cluster is reduced by using an adaptive sampling technique. Our framework is flexible and achieves around 3 – 6 times speedup over previous state‐of‐the‐art methods.  相似文献   

13.
Area lights add tremendous realism, but rendering them interactively proves challenging. Integrating visibility is costly, even with current shadowing techniques, and existing methods frequently ignore illumination variations at unoccluded points due to changing radiance over the light's surface. We extend recent image‐space work that reduces costs by gathering illumination in a multiresolution fashion, rendering varying frequencies at corresponding resolutions. To compute visibility, we eschew shadow maps and instead rely on a coarse screen‐space voxelization, which effectively provides a cheap layered depth image for binary visibility queries via ray marching. Our technique requires no precomputation and runs at interactive rates, allowing scenes with large area lights, including dynamic content such as video screens.  相似文献   

14.
We present a robust, unbiased technique for intelligent light‐path construction in path‐tracing algorithms. Inspired by existing path‐guiding algorithms, our method learns an approximate representation of the scene's spatio‐directional radiance field in an unbiased and iterative manner. To that end, we propose an adaptive spatio‐directional hybrid data structure, referred to as SD‐tree, for storing and sampling incident radiance. The SD‐tree consists of an upper part—a binary tree that partitions the 3D spatial domain of the light field—and a lower part—a quadtree that partitions the 2D directional domain. We further present a principled way to automatically budget training and rendering computations to minimize the variance of the final image. Our method does not require tuning hyperparameters, although we allow limiting the memory footprint of the SD‐tree. The aforementioned properties, its ease of implementation, and its stable performance make our method compatible with production environments. We demonstrate the merits of our method on scenes with difficult visibility, detailed geometry, and complex specular‐glossy light transport, achieving better performance than previous state‐of‐the‐art algorithms.  相似文献   

15.
Environment‐mapped rendering of Lambertian isotropic surfaces is common, and a popular technique is to use a quadratic spherical harmonic expansion. This compact irradiance map representation is widely adopted in interactive applications like video games. However, many materials are anisotropic, and shading is determined by the local tangent direction, rather than the surface normal. Even for visualization and illustration, it is increasingly common to define a tangent vector field, and use anisotropic shading. In this paper, we extend spherical harmonic irradiance maps to anisotropic surfaces, replacing Lambertian reflectance with the diffuse term of the popular Kajiya‐Kay model. We show that there is a direct analogy, with the surface normal replaced by the tangent. Our main contribution is an analytic formula for the diffuse Kajiya‐Kay BRDF in terms of spherical harmonics; this derivation is more complicated than for the standard diffuse lobe. We show that the terms decay even more rapidly than for Lambertian reflectance, going as l–3, where l is the spherical harmonic order, and with only 6 terms (l = 0 and l = 2) capturing 99.8% of the energy. Existing code for irradiance environment maps can be trivially adapted for real‐time rendering with tangent irradiance maps. We also demonstrate an application to offline rendering of the diffuse component of fibers, using our formula as a control variate for Monte Carlo sampling.  相似文献   

16.
Virtual point lights (VPLs) are well established for real‐time global illumination. However, this method suffers from spiky artifacts and flickering caused by singularities of VPLs, highly glossy materials, high‐frequency textures, and discontinuous geometries. To avoid these artifacts, this paper introduces a virtual spherical Gaussian light (VSGL) which roughly represents a set of VPLs. For a VSGL, the total radiant intensity and positional distribution of VPLs are approximated using spherical Gaussians and a Gaussian distribution, respectively. Since this approximation can be computed using summations of VPL parameters, VSGLs can be dynamically generated using mipmapped reflective shadow maps. Our VSGL generation is simple and independent from any scene geometries. In addition, reflected radiance for a VSGL is calculated using an analytic formula. Hence, we are able to render one‐bounce glossy interreflections at real‐time frame rates with smaller artifacts.  相似文献   

17.
Stackless KD-Tree Traversal for High Performance GPU Ray Tracing   总被引:1,自引:1,他引:1  
Significant advances have been achieved for realtime ray tracing recently, but realtime performance for complex scenes still requires large computational resources not yet available from the CPUs in standard PCs. Incidentally, most of these PCs also contain modern GPUs that do offer much larger raw compute power. However, limitations in the programming and memory model have so far kept the performance of GPU ray tracers well below that of their CPU counterparts. In this paper we present a novel packet ray traversal implementation that completely eliminates the need for maintaining a stack during kd-tree traversal and that reduces the number of traversal steps per ray. While CPUs benefit moderately from the stackless approach, it improves GPU performance significantly. We achieve a peak performance of over 16 million rays per second for reasonably complex scenes, including complex shading and secondary rays. Several examples show that with this new technique GPUs can actually outperform equivalent CPU based ray tracers.  相似文献   

18.
We present a performance comparison of bounding volume hierarchies and kd‐trees for ray tracing on many‐core architectures (GPUs). The comparison is focused on rendering times and traversal characteristics on the GPU using data structures that were optimized for very high performance of tracing rays. To achieve low rendering times, we extensively examine the constants used in termination criteria for the two data structures. We show that for a contemporary GPU architecture (NVIDIA Kepler) bounding volume hierarchies have higher ray tracing performance than kd‐trees for simple and moderately complex scenes. On the other hand, kd‐trees have higher performance for complex scenes, in particular for those with high depth complexity. Finally, we analyse the causes of the performance discrepancies using the profiling characteristics of the ray tracing kernels.  相似文献   

19.
We present a flexible and highly efficient hardware‐assisted volume renderer grounded on the original Projected Tetrahedra (PT) algorithm. Unlike recent similar approaches, our method is exclusively based on the rasterization of simple geometric primitives and takes full advantage of graphics hardware. Both vertex and geometry shaders are used to compute the tetrahedral projection, while the volume ray integral is evaluated in a fragment shader; hence, volume rendering is performed entirely on the GPU within a single pass through the pipeline. We apply a CUDA‐based visibility ordering achieving rendering and sorting performance of over 6 M Tet/s for unstructured datasets. Furthermore, as each tetrahedron is processed independently, we employ a data‐parallel solution which is neither bound by GPU memory size nor does it rely on auxiliary volume information. In addition, iso‐surfaces can be readily extracted during the rendering process, and time‐varying data are handled without extra burden.  相似文献   

20.
This paper proposes a method for efficiently rendering indirect highlights. Indirect highlights are caused by the primary light source reflecting off two or more glossy surfaces. Accurately simulating such highlights is important to convey the realistic appearance of materials such as chrome and shiny metal. Our method models the glossy BRDF at a surface point as a directional distribution, using a spherical von Mises‐Fisher (vMF) distribution. As our main contribution, we merge multiple vMFs into a combined multimodal distribution. This effectively creates a filtered radiance response function, allowing us to efficiently estimate indirect highlights. We demonstrate our method in a near‐interactive application for rendering scenes with highly glossy objects. Our results produce realistic reflections under both local and environment lighting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号