首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 782 毫秒
1.
We study inference and diagnostics for count time series regression models that include a feedback mechanism. In particular, we are interested in negative binomial processes for count time series. We study probabilistic properties and quasi‐likelihood estimation for this class of processes. We show that the resulting estimators are consistent and asymptotically normally distributed. These facts enable us to construct probability integral transformation plots for assessing any assumed distributional assumptions. The key observation in developing the theory is a mean parameterized form of the negative binomial distribution. For transactions data, it is seen that the negative binomial distribution offers a better fit than the Poisson distribution. This is an immediate consequence of the fact that transactions can be represented as a collection of individual activities that correspond to different trading strategies.  相似文献   

2.
We propose an integer‐valued stochastic process with conditional marginal distribution belonging to the class of infinitely divisible discrete probability laws. With this proposal, we introduce a wide class of models for count time series that includes the Poisson integer‐valued generalized autoregressive conditional heteroscedastic (INGARCH) model (Ferland et al., 2006) and the negative binomial and generalized Poisson INGARCH models (Zhu, 2011, 2012a). The main probabilistic analysis of this process is developed stating, in particular, first‐order and second‐order stationarity conditions. The existence of a strictly stationary and ergodic solution is established in a subclass including the Poisson and generalized Poisson INGARCH models.  相似文献   

3.
This article discusses the modelling of integer‐valued time series with overdispersion and potential extreme observations. For the problem, a negative binomial INGARCH model, a generalization of the Poisson INGARCH model, is proposed and stationarity conditions are given as well as the autocorrelation function. For estimation, we present three approaches with the focus on the maximum likelihood approach. Some results from numerical studies are presented and indicate that the proposed methodology performs better than the Poisson and double Poisson model‐based methods.  相似文献   

4.
Abstract. This article proposes an autoregressive model for time series of counts with non‐stationary means, variances and covariances as functions of certain time‐dependant covariates. For the estimation of the regression, overdispersion and correlation index parameters, a conditional generalized quasilikelihood (CGQL) approach is developed under the assumption that the count responses marginally satisfy the first two moments of a negative binomial distribution. Thus this CGQL approach avoids the use of the likelihood or so‐called partial likelihood of the data which are known to be extremely complicated in the present non‐stationary time series set‐up. It is shown through an extensive simulation study that the proposed CGQL approach performs very well in estimating the parameters of the model. This is also shown that the CGQL approach performs better than an existing GQL approach, especially for the estimation of the overdispersion parameter of the model.  相似文献   

5.
Regularity conditions are given for the consistency of the Poisson quasi‐maximum likelihood estimator of the conditional mean parameter of a count time series model. The asymptotic distribution of the estimator is studied when the parameter belongs to the interior of the parameter space and when it lies at the boundary. Tests for the significance of the parameters and for constant conditional mean are deduced. Applications to specific integer‐valued autoregressive (INAR) and integer‐valued generalized autoregressive conditional heteroscedasticity (INGARCH) models are considered. Numerical illustrations, Monte Carlo simulations and real data series are provided.  相似文献   

6.
We propose an autoregressive conditional duration (ACD) model with periodic time-varying parameters and multiplicative error form. We name this model periodic autoregressive conditional duration (PACD). First, we study the stability properties and the moment structures of it. Second, we estimate the model parameters, using (profile and two-stage) Gamma quasi-maximum likelihood estimates (QMLEs), the asymptotic properties of which are examined under general regularity conditions. Our estimation method encompasses the exponential QMLE, as a particular case. The proposed methodology is illustrated with simulated data and two empirical applications on forecasting Bitcoin trading volume and realized volatility. We found that the PACD produces better in-sample and out-of-sample forecasts than the standard ACD.  相似文献   

7.
The first‐order nonnegative integer valued autoregressive process has been applied to model the counts of events in consecutive points of time. It is known that, if the innovations are assumed to follow a Poisson distribution then the marginal model is also Poisson. This model may however not be suitable for overdispersed count data. One frequent manifestation of overdispersion is that the incidence of zero counts is greater than expected from a Poisson model. In this paper, we introduce a new stationary first‐order integer valued autoregressive process with zero inflated Poisson innovations. We derive some structural properties such as the mean, variance, marginal and joint distribution functions of the process. We consider estimation of the unknown parameters by conditional or approximate full maximum likelihood. We use simulation to study the limiting marginal distribution of the process and the performance of our fitting algorithms. Finally, we demonstrate the usefulness of the proposed model by analyzing some real time series on animal health laboratory submissions.  相似文献   

8.
In this article, we propose a general class of INteger‐valued Generalized AutoRegressive Conditional Heteroskedastic (INGARCH) models based on a flexible family of mixed Poisson (MP) distributions. Our proposed class of count time series models contains the negative binomial (NB) INGARCH process as particular case and open the possibility to introduce new models such as the Poisson‐inverse Gaussian (PIG) and Poisson generalized hyperbolic secant processes. In particular, the PIG INGARCH model is an interesting and robust alternative to the NB model. We explore first‐order and second‐order stationary properties of our MPINGARCH models and provide expressions for the autocorrelation function and mean and variance marginals. Conditions to ensure strict stationarity and ergodicity properties for our class of INGARCH models are established. We propose an Expectation‐Maximization algorithm to estimate the parameters and obtain the associated information matrix. Further, we discuss two additional estimation methods. Monte Carlo simulation studies are considered to evaluate the finite‐sample performance of the proposed estimators. We illustrate the flexibility and robustness of the MPINGARCH models through two real‐data applications about number of cases of Escherichia coli and Campylobacter infections. This article contains a Supporting Information.  相似文献   

9.
We consider a parameter‐driven regression model for binary time series, where serial dependence is introduced by an autocorrelated latent process incorporated into the logit link function. Unlike in the case of parameter‐driven Poisson log‐linear or negative binomial logit regression model studied in the literature for time series of counts, generalized linear model (GLM) estimation of the regression coefficient vector, which suppresses the latent process and maximizes the corresponding pseudo‐likelihood, cannot produce a consistent estimator. As a remedial measure, in this article, we propose a modified GLM estimation procedure and show that the resulting estimator is consistent and asymptotically normal. Moreover, we develop two procedures for estimating the asymptotic covariance matrix of the estimator and establish their consistency property. Simulation studies are conducted to evaluate the finite‐sample performance of the proposed procedures. An empirical example is also presented.  相似文献   

10.
The parameters of integer autoregressive models with Poisson, or negative binomial innovations can be estimated by maximum likelihood where the prediction error decomposition, together with convolution methods, is used to write down the likelihood function. When a moving average component is introduced this is not the case. To address this problem an efficient method of moment estimator is proposed where the estimated standard errors for the parameters are obtained using subsampling methods. The small sample properties of the estimator are investigated using Monte Carlo methods, while the approach is demonstrated using two well‐known examples from the time series literature.  相似文献   

11.
Abstract. An integer‐valued analogue of the classical generalized autoregressive conditional heteroskedastic (GARCH) (p,q) model with Poisson deviates is proposed and a condition for the existence of such a process is given. For the case p = 1, q = 1, it is explicitly shown that an integer‐valued GARCH process is a standard autoregressive moving average (1, 1) process. The problem of maximum likelihood estimation of parameters is treated. An application of the model to a real time series with a numerical example is given.  相似文献   

12.
For autoregressive count data time series, a goodness‐of‐fit test based on the empirical joint probability generating function is considered. The underlying process is contained in a general class of Markovian models satisfying a drift condition. Asymptotic theory for the test statistic is provided, including a functional central limit theorem for the non‐parametric estimation of the stationary distribution and a parametric bootstrap method. Connections between the new approach and existing tests for count data time series based on moment estimators appear in limiting scenarios. Finally, the test is applied to a real data set.  相似文献   

13.
We discuss robust M‐estimation of INARCH models for count time series. These models assume the observation at each point in time to follow a Poisson distribution conditionally on the past, with the conditional mean being a linear function of previous observations. This simple linear structure allows us to transfer M‐estimators for autoregressive models to this situation, with some simplifications being possible because the conditional variance given the past equals the conditional mean. We investigate the performance of the resulting generalized M‐estimators using simulations. The usefulness of the proposed methods is illustrated by real data examples.  相似文献   

14.
This article develops asymptotic theory for estimation of parameters in regression models for binomial response time series where serial dependence is present through a latent process. Use of generalized linear model estimating equations leads to asymptotically biased estimates of regression coefficients for binomial responses. An alternative is to use marginal likelihood, in which the variance of the latent process but not the serial dependence is accounted for. In practice, this is equivalent to using generalized linear mixed model estimation procedures treating the observations as independent with a random effect on the intercept term in the regression model. We prove that this method leads to consistent and asymptotically normal estimates even if there is an autocorrelated latent process. Simulations suggest that the use of marginal likelihood can lead to generalized linear model estimates result. This problem reduces rapidly with increasing number of binomial trials at each time point, but for binary data, the chance of it can remain over 45% even in very long time series. We provide a combination of theoretical and heuristic explanations for this phenomenon in terms of the properties of the regression component of the model, and these can be used to guide application of the method in practice.  相似文献   

15.
Abstract. We analyze, by simulation, the finite‐sample properties of goodness‐of‐fit tests based on residual autocorrelation coefficients (simple and partial) obtained using different estimators frequently used in the analysis of autoregressive moving‐average time‐series models. The estimators considered are unconditional least squares, maximum likelihood and conditional least squares. The results suggest that although the tests based on these estimators are asymptotically equivalent for particular models and parameter values, their sampling properties for samples of the size commonly found in economic applications can differ substantially, because of differences in both finite‐sample estimation efficiencies and residual regeneration methods.  相似文献   

16.
Abstract. We obtain new models and results for count data time series based on binomial thinning. Count data time series may have non‐stationarity from trends or covariates, so we propose an extension of stationary time series based on binomial thinning such that the univariate marginal distributions are always in the same parametric family, such as negative binomial. We propose a recursive algorithm to calculate the probability mass functions for the innovation random variable associated with binomial thinning. This simplifies numerical calculations and estimation for the classes of time series models that we consider. An application with real data is used to illustrate the models.  相似文献   

17.
Time-series models for count data have found increased interest in recent years. The existing literature refers to the case of data that have been fully observed. In this article, methods for estimating the parameters of the first-order integer-valued autoregressive model in the presence of missing data are proposed. The first method maximizes a conditional likelihood constructed via the observed data based on the k -step-ahead conditional distributions to account for the gaps in the data. The second approach is based on an iterative scheme where missing values are imputed so as to update the estimated parameters. The first method is useful when the predictive distributions have simple forms. We derive in full details this approach when the innovations are assumed to follow a finite mixture of Poisson distributions. The second method is applicable when there are no closed form expression for the conditional likelihood or they are hard to derive. The proposed methods are applied to a dataset concerning syndromic surveillance during the Athens 2004 Olympic Games.  相似文献   

18.
We develop a likelihood ratio (LR) test procedure for discriminating between a short‐memory time series with a change‐point (CP) and a long‐memory (LM) time series. Under the null hypothesis, the time series consists of two segments of short‐memory time series with different means and possibly different covariance functions. The location of the shift in the mean is unknown. Under the alternative, the time series has no shift in mean but rather is LM. The LR statistic is defined as the normalized log‐ratio of the Whittle likelihood between the CP model and the LM model, which is asymptotically normally distributed under the null. The LR test provides a parametric alternative to the CUSUM test proposed by Berkes et al. (2006) . Moreover, the LR test is more general than the CUSUM test in the sense that it is applicable to changes in other marginal or dependence features other than a change‐in‐mean. We show its good performance in simulations and apply it to two data examples.  相似文献   

19.
There has recently been an upsurge of interest in time series models for count data. Many papers focus on the model with first‐order (Markov) dependence and Poisson innovations. Our paper considers practical models that can capture higher‐order dependence based on the work of Joe (1996). In this framework we are able to model both equidispersed and overdispersed marginal distributions of data. The latter is approached using generalized Poisson innovations. Central to the models is the use of the property of closure under convolution of certain families of random variables. The models can be thought of as stationary Markov chains of finite order. Parameter estimation is undertaken by maximum likelihood, inference procedures are considered and means of assessing model adequacy employed. Applications to two new data sets are provided.  相似文献   

20.
Abstract. In this article, we extend the earlier work of Freeland and McCabe [Journal of time Series Analysis (2004) Vol. 25, pp. 701–722] and develop a general framework for maximum likelihood (ML) analysis of higher‐order integer‐valued autoregressive processes. Our exposition includes the case where the innovation sequence has a Poisson distribution and the thinning is binomial. A recursive representation of the transition probability of the model is proposed. Based on this transition probability, we derive expressions for the score function and the Fisher information matrix, which form the basis for ML estimation and inference. Similar to the results in Freeland and McCabe (2004) , we show that the score function and the Fisher information matrix can be neatly represented as conditional expectations. Using the INAR(2) specification with binomial thinning and Poisson innovations, we examine both the asymptotic efficiency and finite sample properties of the ML estimator in relation to the widely used conditional least squares (CLS) and Yule–Walker (YW) estimators. We conclude that, if the Poisson assumption can be justified, there are substantial gains to be had from using ML especially when the thinning parameters are large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号