首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

In this research, thermal buckling and forced vibration characteristics of the imperfect composite cylindrical nanoshell reinforced with graphene nanoplatelets (GNP) in thermal environments are presented. Halpin–Tsai nanomechanical model is used to determine the material properties of each layer. The size-dependent effects of GNPRC nanoshell is analyzed using modified couple stress theory. For the first time, in the present study, porous functionally graded multilayer couple stress (FMCS) parameter which changes along the thickness is considered. The novelty of the current study is to consider the effects of porosity, GNPRC, FMCS and thermal environment on the resonance frequencies, thermal buckling and dynamic deflections of a nanoshell using FMCS parameter. The governing equations and boundary conditions are developed using Hamilton’s principle and solved by an analytical method. The results show that, porosity, GNP distribution pattern, modified couple stress parameter, length to radius ratio, mode number and the effect of thermal environment have an important role on the resonance frequencies, relative frequency change, thermal buckling, and dynamic deflections of the porous GNPRC cylindrical nanoshell using FMCS parameter. The results of current study can be useful in the field of materials science, micro-electro-mechanical systems and nano electromechanical systems such as microactuators and microsensors.

  相似文献   

2.

In this article, thermal buckling and frequency analysis of a size-dependent laminated composite cylindrical nanoshell in thermal environment using nonlocal strain–stress gradient theory are presented. The thermodynamic equations of the laminated cylindrical nanoshell are based on first-order shear deformation theory, and generalized differential quadrature element method is implemented to solve these equations and obtain natural frequency and critical temperature of the presented model. The results show that by considering C–F boundary conditions and every even layers’ number, in lower value of length scale parameter, by increasing the length scale parameter, the frequency of the structure decreases but in higher value of length scale parameter this matter is inverse. Finally, influences of temperature difference, ply angle, length scale and nonlocal parameters on the critical temperature and frequency of the laminated composite nanostructure are investigated.

  相似文献   

3.
4.
This article investigates vibration and instability analysis of a single-walled carbon nanotube (SWCNT) conveying viscous fluid flow. For this purpose, the first-order shear deformation shell model is developed in the framework of nonlocal strain gradient theory (NSGT) for the first time. The proposed model is a conveying viscous fluid in which the external force of fluid flow is applied by the modified Navier–Stokes relation and considering slip boundary condition and Knudsen number. The NSGT can be reduced to the nonlocal elasticity theory, strain gradient theory or the classical elasticity theory by inserting their specific nonlocal parameters and material length scale parameters into the governing equations. Comparison of above-mentioned theories suggests that the NSGT predicts the greatest critical fluid flow velocity and stability region. The governing equations of motion and corresponding boundary conditions are discretized using the generalized differential quadrature method. Furthermore, the effects of the material length scale, nonlocal parameter, Winkler elastic foundation and Pasternak elastic foundation on vibration behavior and instability of a SWCNT conveying viscous fluid flow with simply supported and clamped–clamped boundary conditions are investigated.  相似文献   

5.
The paper theoretically investigates a model of the photosensitivity of porous silicon with cylindrical pores in the condition of homogeneous generation of photocarriers. Dependences of the photoconductivity of a porous semiconductor on the velocity of recombination of nonequilibrium carriers at the surfaces of pores, radius of pores and average distance between them are analyzed. At large velocities of surface recombination the photoconductivity of porous semiconductor is shown to linearly decrease with increasing the pore’s radius. The article is published in the original.  相似文献   

6.
《Computers & Fluids》1977,5(3):115-125
The axisymmetric flow of a swirling viscous, incompressible fluid jet inside confining cylindrical boundaries has been numerically investigated using the well-known implicit finite-difference scheme. For a swirling jet confined by cylindrical tube, the vortex-breakdown or the formation of an axisymmetric isolated eddy occurs at high values of swirl ratios at a moderate flow rate or Reynolds number. With the introduction of artificial adverse pressure gradients, such as one studied in the case of a step-up cylindrical tube, the vortex-breakdown occurs at a relatively lower swirl ratio at a given flow rate. For a swirling jet discharging in a coaxial non-rotating surrounding stream enclosed by a cylindrical tube, the vortex-breakdown and its structure depend on various parameters such as the flow rate of the jet, surrounding stream velocity, the swirl of the jet and on the radius of the enclosing cylindrical tube. In general increasing Reynolds numbers, swirl ratio, decreasing surrounding stream velocity and increasing size of the cylindrical tube enhance the occurrence and size of the vortex-breakdown.  相似文献   

7.

The analysis of the wave propagation behavior of a sandwich structure with a soft core and multi-hybrid nanocomposite (MHC) face sheets is carried out in the framework of the higher-order shear deformation theory (HSDT). In order to take into account the viscoelastic influence, the Kelvin-Voight model is presented. In this paper, the constituent material of the core is made of an epoxy matrix which is reinforced by both macro- and nano-size reinforcements, namely carbon fiber (CF) and carbon nanotube (CNT). The effective material properties like Young's modulus or density are derived utilizing a micromechanical scheme incorporated with the Halpin–Tsai model. Then, on the basis of an energy-based Hamiltonian approach, the equations of motion are derived. The detailed parametric study is conducted, focusing on the combined effects of the viscoelastic foundation, CNT' weight fraction, core to total thickness ratio, small radius to total thickness ratio, and carbon fiber angle on the wave propagation behavior of sandwich structure. The results show that as well as increasing the phase velocity of the sandwich structure by increasing the wave number, this influence will be much more effective by increasing the damping factor. It is also observed that there is a critical value for the viscoelastic foundation that the relation between wave number and phase velocity will change from direct to indirect. The presented study outputs can be used in ultrasonic inspection techniques and structural health monitoring.

  相似文献   

8.
Xiao  Wan-shen  Gao  Yang  Zhu  Haiping 《Microsystem Technologies》2019,25(6):2451-2470

The problem of the nonlinear thermal buckling and post-buckling of magneto-electro-thermo-elastic functionally graded porous nanobeams is analyzed based on Eringen’s nonlocal elasticity theory and by using a refined beam model. The beams with immovable clamped ends are exposed to the external electric voltages, magnetic potentials, a uniform transverse load and uniform temperature change. For the first time, the four types of porosity distribution in the nanobeam are considered and compared in complex electric–magnetic fields. Besides, the new formula of the effective material properties is proposed in this paper to simultaneously estimate the material distribution and porosity distribution in the thickness direction. The generalized variation principle is used to induce the governing equations, then the approximate analytical solution of the METE-FG nanobeams based on physical neutral surface is obtained by using a two-step perturbation technique. Finally, detailed parametric analyses are performed to get an insight into the effects of different physical parameters, including the slenderness ratio, small-scale parameter, volume fraction index, external electric voltages, magnetic potentials, porosity coefficient and different porosity distributions, for providing an effective way to improve post-buckling strength of porous beams.

  相似文献   

9.
研究了细长圆柱体在热环境下的横向流致振动.应用迦辽金法将非线性运动控制偏微分方程离散为常微分方程组,首先分析了热载荷对系统临界流速的影响,然后采用数值方法得到了系统分岔区,以及它在参数空间的分布情况.应用分岔图、相图对系统的运动性质进行了判定.系统随着参数的变化呈现周期运动,温度增加,系统发生颤振的临界速度减小.当温度载荷不变时,流速增加,系统周期振动的振幅越来越大,系统发生极限环振动,周期3运动、拟周期运动和混沌运动.  相似文献   

10.

The paper presents a novel nonlocal strain gradient isogeometric model for functionally graded carbon nanotube-reinforced composite (FG-CNTRC) nanoplates. To observe the length scale and size-dependency effects of nanostructures, the nonlocal strain gradient theory (NSGT) is considered. The present model is efficient to capture both nonlocal effects and strain gradient effects in nanoplate structures. In addition, the material properties of the FG-CNTRC are assumed to be graded in the plate thickness direction. Based on the higher order shear deformation theory (HSDT), the weak form of the governing equations of motion of the nanoplates is presented using the principle of virtual work. Afterward, the natural frequency and deflection of the nanoplates are made out of isogeometric analysis (IGA). Thanks to higher order derivatives and continuity of NURBS basic function, IGA is suitable for the weak form of NSGT which requires at least the third-order derivatives in approximate formulations. Effects of nonlocal parameter, strain gradient parameter, carbon nanotube (CNT) volume fraction, distributions of CNTs and length-to-thickness ratios on deflection and natural frequency of the nanoplates are examined and discussed in detail. Numerical results are developed to show the phenomenon of stiffness-softening and stiffness-hardening mechanisms of the present model.

  相似文献   

11.

Wave propagation simulation in a multi-hybrid nanocomposite (MHC)-reinforced doubly curved open shell covered with piezoelectric actuator is examined for the first time. The third-order shear deformation theory (third-order SDT) is applied to formulate the stress–strain relations. Rule of the mixture and modified Halpin–Tsai model are engaged to provide the effective material constants of the MHC-reinforced open shell. By employing Hamilton’s principle, the governing equations of the structure are derived. Via the compatibility rule, the bonding between the smart layer and sandwich open shell is modeled. Also, with the aid of Maxwell's equation, the mechanics of the piezoelectric layer are formulated. Afterward, a parametric study is carried out to investigate the effects of the CNTs’ weight fraction, various FG face sheet patterns, small radius to total thickness ratio, the thickness of the smart layer, externally applied voltage, and carbon fiber angle on the phase velocity of the MHC-reinforced open shell. Another necessary consequence is that as the externally applied voltage to the piezoelectric layer of the smart open shell increases, there will be seen an enhancement on the phase velocity or wave response of the system and without a doubt this issue is much more substantial at the lower wave number. It is also observed that when the applied voltage is more than zero, we can find a range for the fiber angle that these values are the critical fiber angle and this critical range will expand by increasing the external electrical load. The useful suggestion of this study is that for designing the structure, we should attention to the FG pattern and higher value of the wavenumber, simultaneously. The presented study outputs can be used in ultrasonic inspection techniques and structural health monitoring.

  相似文献   

12.

This paper aims to investigate the size-dependent wave propagation in functionally graded (FG) graphene platelet (GPL)-reinforced composite bi-layer nanobeams embedded in Pasternak elastic foundation and exposed to in-plane compressive mechanical load and in-plane magnetic field. The small-scale effects are taken into account by employing the nonlocal strain gradient theory that contains two different length scale parameters. The present two nanobeams are made of multi-composite layers. Each layer is composed of a polymer matrix reinforced by uniformly distributed and randomly oriented GPLs. The GPLs weight fraction is graded from layer to other according to a new piece-wise rule and then four distribution types will be established. Our technique depends on applying the four-variable shear and normal deformations theory to model the wave propagation problem. The equations of motion are obtained using Hamilton principle. These equations are then analytically solved to obtain the wave frequencies and phase velocities of the waves. The calculated results are compared with those published in the literature. The impacts of the length scale parameters, foundation stiffness, in-plane magnetic field, weight fraction of graphene, graphene platelets distribution type and beam geometry on the propagating waves in the FG GPLs nanobeams are discussed in details. It is found that the strength of the composite beams may be enhanced with increasing in the GPLs weight fraction and magnetic field leading to an increment in the phase velocity and wave frequency of the present system.

  相似文献   

13.
A three-dimensional multiphase lattice Boltzmann model is implemented to study the spontaneous phase transport in complex porous media. The model is validated against the analytical solution of Young’s and Laplace’s laws. Afterward, three-dimensional porous layers are randomly generated to investigate droplet penetration into a substrate, liquid transport in a porous channel as well as extraction of a droplet from a porous medium. Effects of several geometrical and flow parameters such as porosity, density ratio, Reynolds number, Weber number, Froude number and contact angle are considered. A parametric study of the influence of main non-dimensional parameters upon the impact of liquid drops on permeable surface is performed. Results show that while increasing Froude number causes spreading of the droplet on the surface, increasing Reynolds number, Weber number, porosity and liquid-air density ratio will enhance the penetration rate into the surface. Furthermore, increasing the contact angle decreases both the spreading and the penetration rate at the same time. In the same way, for the liquid transport in a porous channel, it is found that increasing the porosity and Reynolds number will result in increasing penetration rate in the channel. For the extraction of a droplet from a porous medium, it is shown that by increasing the gravitational force and/or porosity the droplet extracts faster from the substrate.  相似文献   

14.
Xie  Banghua  Sahmani  Saeid  Safaei  Babak  Xu  Bin 《Engineering with Computers》2021,37(2):1611-1634

To impart desirable material properties, functionally graded (FG) porous silicon has been produced in which the porosity changes gradually across the material volume. The prime objective of this work is to predict the influence of the surface free energy on the nonlinear secondary resonance of FG porous silicon nanobeams under external hard excitations. On the basis of the closed-cell Gaussian-random field scheme, the mechanical properties of the FG porous material are achieved corresponding to the uniform and three different FG patterns of porosity dispersion. The Gurtin–Murdoch theory of elasticity is implemented into the classical beam theory to construct a surface elastic beam model. Thereafter, with the aid of the method of multiple time-scales together with the Galerkin technique, the size-dependent nonlinear differential equations of motion are solved corresponding to various immovable boundary conditions and porosity dispersion patterns. The frequency response and amplitude response associated with the both subharmonic and superharmonic hard excitations are obtained including multiple vibration modes and interactions between them. It is found that for the subharmonic excitation, the nanobeam is excited within a specific range of the excitation amplitude, and this range shifts to higher excitation amplitude by incorporating the surface free energy effects. For the superharmonic excitation, by taking surface stress effect into account, the excitation amplitude associated with the peak of the vibration amplitude enhances. Moreover, in the subharmonic case, it is demonstrated that by increasing the porosity coefficient, the value of the excitation frequency at the joint point of the two branches of the frequency-response curve reduces. In the superharmonic case, it is revealed that an increment in the value of porosity coefficient leads to decrease the peak of the oscillation amplitude and the associated excitation frequency.

  相似文献   

15.
Chen  Shujia  Zhang  Qiao  Liu  Hu 《Engineering with Computers》2021,38(3):2309-2328

In this paper, the vibration response of the double-FG porous beam system (DFGPBS) acted by a moving load is investigated. The DFGPBS composed of two parallel FG porous beams with their material properties varying along both the axial and transverse directions, i.e., bi-directional FG material distribution, is taken into account. The porous imperfection is simulated by distributing the porosity along the beam thickness with even and uneven patterns. The governing equations of this bi-directional DFGPBS under a moving load are established with the aid of the Hamilton principle associated with the Timoshenko beam theory. The Ritz method is adopted to discrete the differential governing equations, which are solved by the Newmark-β approach. The validation of the present model is performed by comparing the numerical results with two previous works. Then, the parametric study is carried out to investigate the influences of bi-directional gradient indices, porosity volume fraction, boundary conditions, stiffness of elastic layer, and velocity of the moving load on the vibration response of bi-directional DFGPBSs excited by a moving load. It is demonstrated that the vibration response of the double-beam system subjected to moving loads can be governed by tailoring the distribution of the bi-directional FG materials. The present work can be used to guide the multi-functional design of a double-beam system under dynamic loadings.

  相似文献   

16.
The fabrication of novel porous conductive composite vapor sensors characterized by different porosities and specific surface areas is described in this study. These samples were obtained by the dry-cast non-solvent induced phase separation (NIPS) method. Porous composite structures have been studied by the SEM, BET and water evaporation methods. Testing different concentrations of several organic vapors, the porous sensors showed improved sensitivities and response times as compared to their dense counterpart. Improved characteristics of the sensor response were correlated to better sorption and diffusion properties of sensing film due to increased porosity and specific surface area obtained by this method of film fabrication. A competition theory was proposed that describes the optimum porosity and thickness of sensing films in which the highest sensitivities were observed.  相似文献   

17.

The static bending behavior of porous functionally graded (PFG) micro-plate under the geometrically nonlinear analysis is studied in this article. A small-scale nonlinear solution is established using the Von-Kármán hypothesis and the modified couple stress theory (MCST). To obtain the deflection of the plate, the Reddy higher-order plate theory coupled with isogeometric analysis (IGA) is utilized. The distribution of porosities is assumed to be even and uneven across the plate’s thickness and the effective material properties of porous functionally graded micro-plate are calculated using the refined rule-of-mixture hypothesis. The influence of power index, porosity parameter and material length scale parameter on the nonlinear behaviors of static bending of porous FGM micro-plates are also investigated using several numerical examples.

  相似文献   

18.
Sheng  G. G.  Wang  X. 《Engineering with Computers》2020,38(1):725-742

The nonlinear resonance responses of functionally graded (FG) cylindrical microshells with the elastic medium is investigated by considering thermal and scale effects. First, using the modified couple stress theory, the nonlinear dynamics model for FG microshell are established. Then the reduced nonlinear differential equations are derived by Galerkin’s method and static condensation. Finally, subharmonic, superharmonic and primary resonances of FG cylindrical microshells are analyzed by a perturbation method. In addition, the bifurcation characteristics of the nonlinear dynamic responses are investigated by some numerical examples. The effects of key parameters (modal damping, excitation frequency, foundation medium, scale parameter and thermal effect) on the nonlinear resonance responses are also discussed by numerical simulation.

  相似文献   

19.

In this article, we have examined three-dimensional unsteady MHD boundary layer flow of viscous nanofluid having gyrotactic microorganisms through a stretching porous cylinder. Simultaneous effects of nonlinear thermal radiation and chemical reaction are taken into account. Moreover, the effects of velocity slip and thermal slip are also considered. The governing flow problem is modelled by means of similarity transformation variables with their relevant boundary conditions. The obtained reduced highly nonlinear coupled ordinary differential equations are solved numerically by means of nonlinear shooting technique. The effects of all the governing parameters are discussed for velocity profile, temperature profile, nanoparticle concentration profile and motile microorganisms’ density function presented with the help of tables and graphs. The numerical comparison is also presented with the existing published results as a special case of our study. It is found that velocity of the fluid diminishes for large values of magnetic parameter and porosity parameter. Radiation effects show an increment in the temperature profile, whereas thermal slip parameter shows converse effect. Furthermore, it is also observed that chemical reaction parameter significantly enhances the nanoparticle concentration profile. The present study is also applicable in bio-nano-polymer process and in different industrial process.

  相似文献   

20.
Tao  Chang  Dai  Ting 《Engineering with Computers》2021,38(3):1885-1900

The present work fills a gap on the postbuckling behavior of multilayer functionally graded graphene platelet reinforced composite (FG-GPLRC) cylindrical and spherical shell panels resting on elastic foundations subjected to central pinching forces and pressure loadings. Based on a higher-order shear deformation theory and the von Kármán’s nonlinear strain–displacement relations, the governing equations of the FG-GPLRC cylindrical and spherical shell panels are established by the principle of virtual work. The non-uniform rational B-spline (NURBS) based isogeometric analysis (IGA), the modified arc-length method and the Newton’s iteration method are employed synthetically to obtain nonlinear load–deflection curves for the panels numerically. Several comparative examples are performed to test reliability and accuracy of IGA and arc-length method in present formulation and programming implementation. Parametric investigations are carried out to illustrate the effects of dispersion type of the graphene platelet (GPL), weight fraction of the GPL, thickness of the panel, radius of the panel and parameters of elastic foundation on the load–deflection curves of the FG-GPLRC shell panels. Some complex load–deflection curves of the FG-GPLRC cylindrical and spherical shell panels resting on elastic foundations may be useful for future references.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号