首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We propose a medium access control protocol design for a vehicle to send safety messages to other vehicles. We develop a Quality-of-Service (QoS) model for safety messages that are consistent with the active vehicle safety systems literature. Each message has a range and useful lifetime. The QoS target has each message received with high probability within its specified lifetime by each vehicle within its specified range. The protocol design is based on rapidly rebroadcasting each message multiple times within its lifetime in combination with the 802.11 Distributed Coordination Function. This makes the design compatible with emerging standards for Dedicated Short-Range Communication. Six different design variations are proposed. We derive equations and develop a simulation tool to assess the performance of the designs. Using these, we identify the best and most easily implemented designs. Design performance depends on the number of rebroadcasts, power, modulation, coding, and vehicular traffic volumes. We show that under certain assumptions on the loss probability tolerated by safety applications, the design is able to transport safety messages in vehicular ad hoc networks  相似文献   

2.
This paper presents a novel Medium Access Control protocol for inter-vehicular wireless networking using the emerging Dedicated Short Range Communication (DSRC) standards. The main contribution of the paper is the design of a self- configuring TDMA protocol capable of inter-vehicle message delivery with short and deterministic delay bounds. The proposed Vehicular Self-Organizing MAC (VeSOMAC) is designed to be vehicle location and movement aware so that the MAC slots in a vehicle platoon can be time ordered based on the vehicles' relative locations for minimizing the multi-hop delivery delay. A novel feature of VeSOMAC is its in-band control mechanism for exchanging TDMA slot information during distributed MAC scheduling. It is shown that by avoiding explicit timing information exchange, VeSOMAC can work without inter-vehicle time synchronization. The in-band control mechanism is also used for fast protocol convergence during initial network setup and topology changes due to vehicle movements. A simulation model has been developed for comparing VeSOMAC's performance with that of DSRC-recommended 802.11 MAC protocol for highway traffic safety applications.  相似文献   

3.
彭鑫  李仁发  付彬  李文  刘志鹏 《电子学报》2017,45(9):2195-2201
针对车联网的容迟特性造成通信资源受限的问题,提出了满足副本抑制要求的数据分发方案.方案利用马尔可夫链,通过交通网络的车辆概率分布建立路段的期望传输时延,并结合车辆的轨迹与目标位置的匹配度确定车辆的转发优先级.车辆为转发的每个数据包插入转发参数字段并通过同步反馈机制确定最终的转发车辆,确保由优先级最高的车辆完成转发.考虑到链路的稳定性,还推导了当前丢包率前提下,车辆接收数据包与发送次数之比,避免不必要的发送尝试产生大量副本.实验结果显示,提出的方案与基于轨迹预测的算法相比,有效提高了网络吞吐量和时延性能.  相似文献   

4.
设计一种超声车距预警系统,该系统采用单片机控制技术和超声波测距技术,通过显示障碍物与汽车的距离并根据其距离远近实时发出报警。该设计采用三传感器接收系统解决了障碍物的二维定位问题,并对所使用的车距预警系统进行了误差分析。  相似文献   

5.
车联网高级安全服务中,智能网联车辆配备了摄像头,可以拍摄周围的视频,用于安全、交通监控和监视等目的。车辆将获取的视频上传到边缘计算节点后,可以对视频进行分析和备份,以满足不同的安全驾驶需求。然而,车辆连续直接向边缘计算节点上传生成的视频内容会非常消耗带宽,并消耗大量的能量。基于该问题,提出一种面向智能网联汽车边缘网络的分布式端-边协同算法。针对车联网高可靠低时延内容传输的特点,引入有限块长度编码机制。同时,引入车辆视频信息源的压缩编码功率消耗,建立车辆能耗模型。根据车辆视频信息源的视频质量要求,通过调整视频编码码率、信息源传输速率,以及车辆多路径路由的决策,提出一种完全分布式的优化算法,以提高网络资源利用率,并保证单个车辆的能耗公平性。  相似文献   

6.
We investigate the joint relay and antenna selection performance in a multiple input multiple output (MIMO) Vehicle-to-Vehicle (V2V) communication system employing physical layer network coding (PLNC) with amplify-and-forward (AF) scheme at the relay antenna. Analytic results are derived under the cascaded Nakagami-m fading channel model assumption, which covers cascaded Rayleigh and conventional cellular channel models as well. We evaluate the performance of the system in terms of joint outage probability of sources and derive closed-form expressions for lower and upper bounds while an exact expression is found as a single integral form. Besides, the asymptotic diversity order is analyzed and quantified as a function of number of relays and antennas installed on the source and relay vehicles, and channel parameters. Finally, we verify the analytic derivations by computer simulations. Our results show that the outage probability performance decreases with the increasing cascading degrees of the channels but joint relay and antenna selection enhances the performance of the system superbly with the increasing number of relays and antennas. Also it is shown throughout all the simulation results, the lower bound for the joint outage probability seems to consistently be well tight for large SNR. Therefore it can be used for practical design of inter-vehicular communication systems which contain multiple relays and antennas.  相似文献   

7.
车辆间的传输干扰在车辆自组织网络中是影响车辆间通信质量的一个重要因素,车辆在同时发送信号过程中会对周围车辆接收的信号产生影响,从而对网络连通性预测产生更大的挑战。根据车辆密度及交通流量,提出一种基于Nakagami的车载网络连通预测模型。该模型采用Nakagami分布特性描述信号传输过程中的衰落信道,通过接收信号功率概率密度函数及信噪比获得车辆间连通概率。仿真结果表明,在传输信号车辆比例达到饱和之前,通过提高传输信号车辆比例可以提高连通概率,但若此比例超过了饱和值则会对车辆连通产生消极的影响。  相似文献   

8.
In most safety applications within vehicle ad-hoc networks (VANETs), vehicles need to periodically broadcast messages with information of their precise positions to others. These broadcast messages, however, make it easy to track vehicles and will likely lead to violations of personal privacy. Unfortunately, most of the current location privacy enhancement methodologies in VANETs suffer some shortcomings and do not take driving safety into consideration. In this paper, we propose a safe distance based location privacy scheme called SafeAnon, which can significantly enhance location privacy as well as traffic safety. By simulating vehicular mobility in a cropped Manhattan map, we evaluate the performance of the proposed scheme under various conditions. The mean entropy, warning broadcast ratio, and mean silent period of SafeAnon scheme are increasing 58%, 281%, and 50% respectively than the random silent period (RSP) scheme. The total broadcast ratio is also 33% less than that in the RSP scheme.  相似文献   

9.
AMOEBA: Robust Location Privacy Scheme for VANET   总被引:2,自引:0,他引:2  
Communication messages in vehicular ad hoc networks (VANET) can be used to locate and track vehicles. While tracking can be beneficial for vehicle navigation, it can also lead to threats on location privacy of vehicle user. In this paper, we address the problem of mitigating unauthorized tracking of vehicles based on their broadcast communications, to enhance the user location privacy in VANET. Compared to other mobile networks, VANET exhibits unique characteristics in terms of vehicular mobility constraints, application requirements such as a safety message broadcast period, and vehicular network connectivity. Based on the observed characteristics, we propose a scheme called AMOEBA, that provides location privacy by utilizing the group navigation of vehicles. By simulating vehicular mobility in freeways and streets, the performance of the proposed scheme is evaluated under VANET application constraints and two passive adversary models. We make use of vehicular groups for anonymous access to location based service applications in VANET, for user privacy protection. The robustness of the user privacy provided is considered under various attacks.  相似文献   

10.
文章针对车辆正常运行和车辆防盗问题,提出了汽车无线防盗防撞报警器的设计方案。该系统主要对车辆行驶(包含前进、倒车、转弯)的环境进行判别,用两车之间的间隔或者车与障碍物的距离作为判断依据,一旦达到危险极限阀值,系统会发出危险警报提醒,大幅度减少交通事故的发生。此报警器以单片机为主体结构,包含了4个不同的模块:数据显示、距离测量、无线发射和无线接收。采用单片机(STC89C51)为主控器,用超声波进行测距,震动检测模块检测震动,并使用发光二极管进行数据的显示。此系统具备显示效果直观、电路简单易懂、切换简单方便、成本低廉等优点,市场前景非常广阔。  相似文献   

11.
Advances in mobile networks and positioning technologies have made location information a valuable asset in vehicular ad-hoc networks (VANETs). However, the availability of such information must be weighted against the potential for abuse. In this paper, we investigate the problem of alleviating unauthorized tracking of target vehicles by adversaries in VANETs. We propose a vehicle density-based location privacy (DLP) scheme which can provide location privacy by utilizing the neighboring vehicle density as a threshold to change the pseudonyms. We derive the delay distribution and the average total delay of a vehicle within a density zone. Given the delay information, an adversary may still be available to track the target vehicle by some selection rules. We investigate the effectiveness of DLP based on extensive simulation study. Simulation results show that the probability of successful location tracking of a target vehicle by an adversary is inversely proportional to both the traffic arrival rate and the variance of vehicles’ speed. Our proposed DLP scheme also has a better performance than both Mix-Zone scheme and AMOEBA with random silent period.  相似文献   

12.
Safety systems for ground vehicles are deployed in different phases according to the timing of activation relative to the occurrence instant of an accident. Collision warning or avoidance systems function prior to an accident, while occupant protection systems act during a collision to mitigate the damage or injuries caused by an accident. This paper deals with crash sensing systems that detect a collision and evaluate the severity of a crash. One major application of these sensing systems is their current use in occupant restraint systems. They may also be utilized in the future for advanced vehicle control and safety systems. With air bags becoming standard equipment in new passenger vehicles, crash sensing technologies have advanced considerably. Yet, existing challenges and new innovations continue to demand improvements in their functions. This paper focuses on the system performance of crash sensing systems. The purpose of this paper is to propose a framework of addressing various design issues from both a component level and a system perspective. Through the discussions of crash data analysis, the design concepts of crash sensors are highlighted. The characteristics of representative mechanical and electronic sensors are analyzed and the guidelines of sensor selection to meet design requirements are discussed. Also, an assessment of sensor reliability is reviewed with various system architectures. Finally, suggestions are made to enhance system performance in areas that may benefit from the addition of sensing functionality. The public has become conscientiously aware of the importance of transportation safety. With more advanced technologies introduced into ground vehicles, the safety concerns will intensify. The demand for a friendly driving environment and vehicle interior will further promote the requirements of vehicular safety systems. Crash sensing will remain a challenging and active area for years to come  相似文献   

13.
In urban vehicular wireless environments, several vehicles can send warning messages and so every vehicle within the transmission range will receive the broadcast transmission, possibly rebroadcasting these messages to other vehicles. This increases the number of vehicles receiving the traffic warning messages. Hence, redundancy, contention, and packet collisions due to simultaneous forwarding (usually known as the broadcast storm problem), can occur. In the past, several approaches have been proposed to solve the broadcast storm problem in wireless networks such as Mobile ad hoc Networks MANETs. In this paper, we present Street Broadcast Reduction SBR, a novel scheme that mitigates the broadcast storm problem in VANETs. SBR also reduces the warning message notification time and increases the number of vehicles that are informed about the alert.  相似文献   

14.
As vehicular networks are gaining popularity, large number of vehicles want to take advantage of these networks, by utilizing the information they have, in order to take decision. Vehicle receives data from other vehicles or from the road side units (RSUs) available across the road. Since RSUs act as router to connect with the external world as well as it is a high capacity storage place where important data (e.g. data used in traffic safety, location dependent query, etc.) can be stored for download purpose for other vehicles moving through the service area. Since the RSUs have limited communication range and vehicles usually moves at very high speed in the service area, they have limited time to serve data to vehicles moving in the service area. For this purpose RSUs have to schedule data in such a way that maximum vehicles can get benefit from the data available with the RSUs. There are many algorithms proposed in the past to schedule data at RSUs. This paper proposes a mechanism to schedule data of those vehicles which are in the coverage range of the RSU. The proposed algorithm outperforms to serve requests whose deadline is about to expire i.e. vehicles which have left the service area after forwarding request to RSU. This scheme performs well in dense network and has good results in highway scenario.  相似文献   

15.
As the advance of memory technologies, multiple types of memories such as different kinds of non-volatile memory (NVM), SRAM, DRAM, etc. provide a flexible configuration considering performance, energy and cost. For improving the performance of systems with multiple types of memories, data allocation is one of the most important tasks. The previous studies on data allocation problem assume the worst (fixed) case of data-access frequencies. However, the data allocation produced by employing worst case usually leads to an inferior performance for most of time. In this paper, we model this problem by probabilities and design efficient algorithms that can give optimal-cost data allocation with a guaranteed probability. We propose DAGP algorithm produces a set of feasible data allocation solutions which generates the minimum access time or cost guaranteed by a given probability. We also propose a polynomial-time algorithm, MCS algorithm, to solve this problem. The experiments show that our technique can significantly reduce the access cost compared with the technique considering worst case scenario. For example, comparing with the optimal result generated by employing the worst cases, DAGP can reduce memory access cost by 9.92 % on average when guaranteed probability is set to be 0.9. Moreover, for 90 percents of cases, memory access time is reduced by 12.47 % on average. Comparing with greedy algorithm, DAGP and MCS can reduce memory access cost by 78.92 % and 44.69 % on average when guaranteed probability is set to be 0.9.  相似文献   

16.
The Internet of vehicles (IoV) is an emerging networking technology, which can support information sharing and interactions among users, vehicles, and infrastructures. Various applications can be provided by IoVs, and they have very different quality‐of‐service (QoS) requirements. It is a great challenge to design an efficient MAC protocol to meet the different QoS demands of various applications in IoVs, because of unreliable links and high vehicle mobility. On the other hand, cooperative communication is effective in mitigating wireless channel impairments by utilizing the broadcast nature of wireless channels. In this paper, a multi‐channel cooperative clustering‐based MAC (MCC‐MAC) protocol, under the Dedicated Short Range Communication (DSRC) multi‐channel architecture, is presented to improve the transmission reliability of safety messages and provision QoS for different applications in IoVs. Further, we analyze the performance of MCC‐MAC, in terms of average transmission delay. In addition, extensive simulations with ns‐2 are conducted to demonstrate the performance of the proposed MCC‐MAC. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
This paper proposes an auto regressive moving average (ARMAX)-based adaptive control methodology to prevent congestion in high-speed asynchronous transfer mode (ATM) networks. An adaptive controller is developed to control traffic where sources adjust their transmission rates in response to the feedback information from the network switches. Specifically, the buffer dynamics at a given switch is modeled as a nonlinear discrete-time system and an ARMAX controller is designed so as to predict the explicit values of the transmission rates of the sources so as to prevent congestion. Tuning methods are provided for the unknown coefficients of the ARMAX model to estimate the unpredictable and statistically fluctuating network traffic. Mathematical analysis is given to demonstrate the stability of the closed-loop system so that a desired quality of service (QoS) can be guaranteed. The QoS is defined in terms of cell loss ratio (CLR), transmission delay and buffer utilization. We derive design rules mathematically for selecting the parameters of the ARMAX algorithm such that the desired performance is guaranteed during congestion and potential tradeoffs are shown. Simulation results are provided to justify the theoretical conclusions for multiple source/single switch scenarios using both ON/OFF and MPEG data. The performance of the proposed congestion control scheme is also evaluated in the presence of feedback delays for robustness considerations.  相似文献   

18.
Recently, by using vehicle-to-vehicle and vehicle-to-infrastructure communications for VANET/ITS, the cooperative active safety driving (ASD) providing vehicular traffic information sharing among vehicles significantly prevents accidents. Clearly, the performance analysis of ASD becomes difficult because of high vehicle mobility, diverse road topologies, and high wireless interference. An inaccurate analysis of packet connectivity probability significantly affects and degrades the VANET/ITS performance. Especially, most of related studies seldom concern the impact factors of vehicular accidents for the performance analyses of VANET/ITS. Thus, this paper proposes a two-phase approach to model a distributed VANET/ITS network with considering accidents happening on roads and to analyze the connectivity probability. Phase 1 proposes a reliable packet routing and then analyzes an analytical model of packet connectivity. Moreover, the analysis is extended to the cases with and without exhibiting transportation accidents. In phase 2, by applying the analysis results of phase 1 to phase 2, an adaptive vehicle routing, namely adaptive vehicle routing (AVR), is proposed for accomplishing dynamic vehicular navigation, in which the cost of a road link is defined in terms of several critical factors: traffic density, vehicle velocity, road class, etc. Finally, the path with the least path cost is selected as the optimal vehicle routing path. Numerical results demonstrate that the analytical packet connectivity probability and packet delay are close to that of simulations. The yielded supreme features justify the analytical model. In evaluations, the proposed approach outperforms the compared approaches in packet connectivity probability, average travel time, average exhausted gasoline. However, the proposed approach may lead to a longer travel distance because it enables the navigated vehicle to avoid traversing via the roads with a higher traffic density.  相似文献   

19.
Safety message dissemination is crucial in vehicular ad hoc networks (VANETs) for road safety applications. Vehicles regularly transmit safety messages to surrounding vehicles to prevent road accidents. However, changing vehicle mobility and density can cause unstable network conditions in VANETs, making it inappropriate to use a fixed contention window (CW) for different network densities. It has been proposed a 1-D Markov model under unsaturation conditions to analyze the performance of the system with varying CWs under changing vehicle densities. Additionally, it introduces the use of cooperative communication (CoC) to relay failed safety messages. In CoC, two control packets, namely, negative acknowledge (NACK) and enable to cooperate (ETC), are utilized. The proposed analytical model named cooperative communication for safety message dissemination (CoC-SMD) is used to calculate throughput and average packet delay for varying CW and different packet size. The simulation confirms the validity of the analytical results and show significant improvement in the metrics through the use of varying CW sizes and CoC compared with existing techniques.  相似文献   

20.
Nonlinear brake control for vehicle CW/CA systems   总被引:1,自引:0,他引:1  
A brake control law for vehicle collision warning/collision avoidance (CW/CA) systems has been proposed in the paper. The control law has been designed for optimized safety and comfort. A solenoid-valve-controlled hydraulic brake actuator system for the CW/CA systems has been investigated. A nonlinear computer model and a linear model of the hydraulic brake actuator system have been developed. Both models were found to represent the actual system with good accuracy. Uncertainties in the brake actuator model have been considered in the design of the control law for the robustness of the controller. The effects of brake control on CW/CA vehicle response has been investigated via simulations. The simulations were performed using a complete nonlinear vehicle model. The results indicate that the proposed brake control law can provide the CW/CA vehicles with an optimized compromise between safety and comfort  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号