首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ternary composites of high‐impact polystyrene (HIPS), elastomer, and magnesium hydroxide filler encapsulated by polystyrene were prepared to study the relationships between their structure and mechanical properties. Two kinds of morphology were formed. Separation of elastomer and filler was found when a nonpolar poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] triblock copolymer (SEBS) was incorporated. Encapsulation of filler by elastomer was achieved by using the corresponding maleinated SEBS (SEBS‐g‐MA). The mechanical properties of ternary composites were strongly dependent on microstructure. In this study, the composites with separate dispersion structure showed higher elongation, modulus and impact strength than those of encapsulation structure. Impact‐fracture surface observation showed that the toughening mechanism was mainly due to the massive cavitation and extensive matrix yielding. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5184–5190, 2006  相似文献   

2.
High impact polystyrene (HIPS)/magnesium hydroxide (MH) composites were prepared by melt‐blending. Two kinds of interfacial modifiers were used in this research, maleinated poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS‐g‐MA) triblock copolymer and PS. The effects of the use levels of SEBS‐g‐MA on the flame retardancy of HIPS/elastomer/MH based on unmodified and PS‐modified surface were investigated by TEM, FTIR, and combustion tests (horizontal burning test and cone calorimetry). The combustion results showed that comparing composites containing unmodified MH, the flame retarding properties of composites containing PS‐modified MH were obviously improved. The increased performance can be explained that the PS covered on the surface of MH could further improve dispersion of the filler in matrix. Furthermore, there existed a critical thickness of interfacial boundary for optimum flame‐retarding properties in both ternary composites based MH and PS‐modified MH. When the interfacial boundary relative thickness is less than 0.53, the introduction of SEBS‐g‐MA can improve the dispersion degree, leading the improvement of flame retardancy properties. However, with the increase of interfacial boundary thickness, the SEBS‐g‐MA coating around MH acted as a heat and mass transfer barrier, leading to the reduction of flame retardancy. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Microstructural characteristics of isotactic‐polypropylene/glass bead (iPP/GB) and iPP/wollastonite (iPP/W) composites modified with thermoplastic elastomers, poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) copolymer (SEBS) and corresponding block copolymer grafted with maleic anhydride (SEBS‐g‐MA), were investigated. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and dynamic mechanical analyses (DMA) showed that the iPP/SEBS and iPP/SEBS‐g‐MA blends were partially compatible two‐phase systems. Well‐dispersed spherical GB and acicular W particles without evidence of interfacial adhesion were observed in the iPP/GB and iPP/W binary composites respectively. Contrary to the blends, melt flow rates of the iPP/GB and PP/W composites decreased more with SEBS‐g‐MA than with SEBS because of enhanced interfacial adhesion with SEBS‐g‐MA elastomer. The SEM analyses showed that the ternary composites containing SEBS exhibited separate dispersion of the rigid filler and elastomer particles (i.e., separate microstructure). However, SEBS‐g‐MA elastomer not only encapsulated the spherical GB and acicular W particles completely with strong interfacial adhesion (i.e., core‐shell microstructure) but also dispersed separately throughout iPP matrix. In accordance with the SEM observations, the DSC and DMA revealed quantitatively that the rigid filler and SEBS particles in iPP matrix acted individually, whereas the rigid filler particles in the ternary composites containing SEBS‐g‐MA acted like elastomer particles because of the thick elastomer interlayer around the filler particles. The Fourier transform infrared analyses revealed an esterification reaction inducing the strong interfacial adhesion between the SEBS‐g‐MA phase and the filler particles. POLYM. COMPOS., 31:1265–1284, 2010. © 2009 Society of Plastics Engineers  相似文献   

4.
Supermolecular structure of isotactic polypropylene/wollastonite/styrenic rubber block copolymers composites were studied as a function of elastomeric poly‐ (styrene‐b‐ethylene‐co‐butylene‐b‐styrene) triblock copolymer (SEBS) and the SEBS grafted with maleic anhydride (SEBS‐g‐MA) content (from 0 to 20 vol%) by optical, scanning, and transmission electron microscopy, wide‐angle X‐ray diffraction and differential scanning calorimetry. Wollastonite particles disturbed the spherulitization of polypropylene matrix. Both elastomers affected the crystallization of polypropylene matrix mainly by solidification effect. Although SEBS‐g‐MA encapsulated wollastonite particles more expressive than SEBS forming thus core‐shell morphology in higher extent, scanning electron micrographs indicated more constrained wollastonite particles in fractured surfaces of composites with SEBS elastomer. Moreover, SEBS‐g‐MA disorientated wollastonite particles and affected reorientation of the polypropylene crystallites stronger than SEBS elastomer. POLYM. ENG. SCI., 47:2145–2154, 2007. © 2007 Society of Plastics Engineers  相似文献   

5.
Mechanical properties of the isotactic‐polypropylene/glass bead (iPP/GB) and iPP/wollastonite (iPP/W) composites modified with thermoplastic elastomers, the poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) copolymer (SEBS) and corresponding block copolymer grafted with maleic anhydride (SEBS‐g‐MA), were investigated. An increase in toughness of iPP with the elastomers was associated with a decrease in rigidity and strength. Mechanical performance of iPP increased more with acicular W than with spherical GB due to reinforcing effect of W. Comparing the (iPP/GB)/SEBS and (iPP/W)/SEBS composites having the separate microstructure, strength and toughness values of the iPP/GB and iPP/W composites increased more with SEBS‐g‐MA at the expense of rigidity due to the core‐shell microstructure with strong interfacial adhesion. Moreover, the iPP/W composite exhibited superior mechanical performance with 2.5 and 5 vol% of SEBS‐g‐MA because of a positive synergy between the core‐shell microstructure and reinforcing effect of acicular W. The extended models revealed that the elastomer and filler particles in the (iPP/GB)/SEBS and (iPP/W)/SEBS composites acted individually due to the separate microstructure. However, the rigid GB and W particles encapsulated with the thick elastomer interlayer (R0/R1 = 0.91) in the (iPP/GB)/SEBS‐g‐MA and (iPP/W)/SEBS‐g‐MA composites acted like neither big elastomer particles nor like individual rigid particles, inferring more complicated failure mechanisms in the core‐shell composites. POLYM. COMPOS., 31:1285–1308, 2010. © 2010 Society of Plastics Engineers  相似文献   

6.
Steady‐ and oscillatory‐shear rheological behaviors of polypropylene/glass bead (PP/GB) and PP/wollastonite (PP/W) melts modified with thermoplastic elastomers, poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) copolymer (SEBS) and the corresponding block copolymer grafted with maleic anhydride (SEBS‐g‐MA), were examined by means of a parallel‐plate rheometer. With adding the elastomers (SEBS and SEBS‐g‐MA) and fillers (spherical GB and acicular W) to PP, viscosity especially at low shear rates and shear‐thinning flow behavior at high shear rates were pronounced as evidenced quantitatively by Carreau–Yasuda (CY) parameters, but Cox–Merz analogy became weakened. Besides, melt‐elasticity in terminal region and relaxation time (tc) in crossing point increased, indicating an enhancement in quasi‐solid behavior of molten PP. Comparing with the elastomers, rheological behaviors of molten PP were more influenced with adding the rigid fillers, especially with W due to distinct acicular shape of W particles. SEBS‐g‐MA elastomer more affected rheological behaviors of the ternary composites than SEBS elastomer, implying that SEBS elastomer and the filler particles behaved individually (i.e., development of separate microstructure) in (PP/GB)/SEBS and (PP/W)/SEBS ternary composites, but core‐shell microstructure developed with strong interfacial adhesion by adding SEBS‐g‐MA elastomer, and the filler particles encapsulated with the thick SEBS‐g‐MA elastomer interlayer (i.e., core‐shell particles) acted like neither big elastomer particles nor like individual rigid particles in melt‐state. Moreover, effects of SEBS‐g‐MA elastomer reached a maximum on rheological behaviors of (PP/W)/SEBS‐g‐MA ternary composite, indicating a synergy between core‐shell microstructure and acicular W particles. Correlations between oscillatory‐shear flow properties and microstructures of the blends and composites were evaluated using Cole–Cole (CC), Han–Chuang (HC), and van Gurp–Palmen (vGP) plots. COMPOS., 2012. © 2012 Society of Plastics  相似文献   

7.
Mechanical properties of isotactic polypropylene/wollastonite/styrene rubber block copolymers (iPP/wollastonite/SRBC) composites were studied as a function of elastomeric poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) triblock copolymer (SEBS) and SEBS grafted with maleic anhydride (SEBS‐g‐MA) content from 0 to 20 vol%. Microphase morphology was stronger influenced by SRBC elastomers than by different wollastonite types. Higher encapsulation ability of SEBS‐g‐MA than SEBS caused more expressive core‐shell morphology and consequently higher notched impact strength as well as yield parameters, but lower Young's modulus. Higher ductility of the composites with SEBS than with SEBS‐g‐MA has been primarily caused by better miscibility of the polypropylene chains with SEBS molecules. Surface properties of components and adhesion parameters also indicated that adhesion at SEBS‐g‐MA/wollastonite interface, which was stronger than the one at the SEBS/wollastonite interface, influenced higher encapsulation of wollastonite particles by SEBS‐g‐MA. POLYM. ENG. SCI., 47:1873–1880, 2007. © 2007 Society of Plastics Engineers  相似文献   

8.
The effects of different silica loadings and elastomeric content on interfacial properties, morphology and mechanical properties of polypropylene/silica 96/4 composites modified with 5, 10, 15, and 20 vol % of poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) SEBS added to total composite volume were investigated. Four silica fillers differing in size (nano‐ vs. micro‐) and in surface properties (untreated vs. treated) were chosen as fillers. Elastomer SEBS was added as impact modifier and compatibilizer at the same time. The morphology of ternary polymer composites revealed by light and scanning electron microscopies was compared with morphology predicted models based on interfacial properties. The results indicated that general morphology of composite systems was determined primarily by interfacial properties, whereas the spherulitic morphology of polypropylene matrix was a result of two competitive effects: nucleation effect of filler and solidification effect of elastomer. Tensile and impact strength properties were mainly influenced by combined competetive effects of stiff filler and tough SEBS elastomer. Spherulitic morphology of polypropylene matrix might affect some mechanical properties additionally. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41486.  相似文献   

9.
Propylene random copolymer (PPR)/styrene‐ethylene‐butylene‐styrene block copolymer (SEBS)/compatibilizer/organic‐montmorillonite (OMMT) quaternary nanocomposites and PPR/compatibilizer/OMMT ternary nanocomposites were prepared via two‐stage melt blending and influences of compatibilizers, maleic anhydride (MA) grafted styrene‐ethylene‐butylene‐styrene copolymer (SEBS‐g‐MA), poly(octene‐co‐ethylene) (POE‐g‐MA), or propylene block copolymers (PPB‐g‐MA), on rheology and mechanical properties of the nanocomposites were investigated. The results of X‐ray diffraction measurement and transmission electron microscopy observation showed that OMMT layers were mainly intercalated in the nanocomposites except for the mainly exfoliated structure in the quaternary nanocomposites using POE‐g‐MA as compatibilizer. The nanocomposites exhibited pseudo‐solid like viscoelasticity in low frequencies and shear‐thinning in high shear rates. As far as OMMT dispersion was concerned, POE‐g‐MA was superior to SEBS‐g‐MA and PPB‐g‐MA, which gives rise to the highest viscosities in both the ternary and quaternary nanocomposites. The quaternary nanocomposites containing POE‐g‐MA were endowed with balanced toughness and rigidity. It was suggested that a suitable combination of compatibilizer and SEBS was an essentially important factor for adjusting the OMMT dispersion and distribution, the rheological and mechanical performances of the nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
The preparation of high‐dielectric poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene) (SEBS) composites containing functionalized single‐walled carbon nanotubes (f‐SWCNTs) noncovalently appended with dibutyltindilaurate are reported herein. Transmission electron microscopy and X‐ray photoelectron and Raman spectroscopy confirmed the noncovalent functionalization of the SWCNTs. The SEBS‐f‐SWCNT composites exhibited enhanced mechanical properties as well as a stable and high dielectric constant of approximately 1000 at 1 Hz with rather low dielectric loss at 2 wt% filler content. The significantly enhanced dielectric property originates from the noncovalent functionalization of the SWCNTs that ensures good dispersion of the f‐SWCNTs in the polymer matrix. The f‐SWCNTs also acted as a reinforcing filler, thereby enhancing the mechanical properties of the composites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
The incorporation of carbon nanotubes (CNTs) is expected as an effective path for tailoring mechanical properties of polymer blends. In this study, acid‐modified multiwalled CNTs (A‐MWCNTs) were introduced into polystyrene/maleic anhydride‐g‐(styrene‐ethylene‐butadiene‐styrene) (PS/SEBS‐MA) blends. By altering the mass ratio of PS/SEBS‐MA from 80/20 to 60/40, the biphase structure of blend was changed from sea‐island‐like type to quasi co‐continuous structure, of different mechanical behaviors. In 80/20 mass ratio, the impact strength was improved while the tensile strength was unchanged with increasing A‐MWCNTs content, whereas a simultaneously toughening and strengthening effect was achieved for the compound with 60/40 mass ratio. Scanning electron microscopy, polarized light microscopy, dynamic mechanical analysis, and rheological measurements were carried out to detect the distribution of A‐MWCNTs in the blends. The results demonstrated as increasing the nanotube loading from 0 to 3 wt%, A‐MWCNTs might gradually migrate into continuous PS phase in 80/20 mass ratio, due to the low content of SEBS‐MA, while they were totally packed in SEBS‐MA region within the entire loading range used in 60/40 mass ratio due to its high content of SEBS‐MA. This study provides guidance on the design and preparation of high performance ternary polymer/elastomer/inorganic filler composites. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

12.
Eighty/twenty polypropylene (PP)/styrene–ethylene–butylene–styrene (SEBS) and 80/20 PP/maleated styrene–ethylene–butylene–styrene (SEBS‐g‐MA) blends reinforced with 30 wt % short glass fibers (SGFs) were prepared by extrusion and subsequent injection molding. The influence of the maleic anhydride (MA) functional group grafted to SEBS on the properties of SGF/SEBS/PP hybrid composites was studied. Tensile and impact tests showed that the SEBS‐g‐MA copolymer improved the yield strength and impact toughness of the hybrid composites. Extensive plastic deformation occurred at the matrix interface layer next to the fibers of the SGF/SEBS‐g‐MA/PP composites during impact testing. This was attributed to the MA functional group, which enhanced the adhesion between SEBS and SGF. Differential scanning calorimetry measurements indicated that SEBS promoted the crystallization of PP spherulites by acting as active nucleation sites. However, the MA functional group grafted to SEBS retarded the crystallization of PP. Finally, polarized optical microscopy observations confirmed the absence of transcrystallinity at the glass‐fiber surfaces of both SGF/SEBS/PP and SGF/SEBS‐g‐MA/PP hybrid composites. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1303–1311, 2002  相似文献   

13.
In this study, styrene‐b‐ethylene/butylene‐b‐styrene triblock copolymer (SEBS) and maleic anhydride grafted SEBS (SEBS‐g‐MA) were used as compatibilizers for the blends of polyphenylene sulfide/nylon 66 (PPS/PA66). The mechanical properties, including impact and tensile properties and morphology of the blends, were investigated by mechanical properties measurements and scanning electron microscopy. Impact measurements indicated that the impact strength of the blends increases slowly with elastomer (SEBS and SEBS‐g‐MA) content upto 20 wt %; thereafter, it increases sharply with increasing elastomer content. The impact energy of the elastomer‐compatibilized PPS/PA66 blends exceeded that of pure nylon 66, implying that the nylon 66 can be further toughened by the incorporation of brittle PPS minor phase in the presence of SEBS or SEBS‐g‐MA. The compatibilization efficiency of SEBS‐g‐MA for nylon‐rich PPS/PA66 was found to be higher than SEBS due to the in situ forming SEBS interphase between PPS and nylon 66. The correlation between the impact property and morphology of the SEBS‐g‐MA compatibilized PPS/PA66 blends is discussed. The excellent impact strength of the nylon‐rich blends resulted from shield yielding of the matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

14.
Polystyrene (PS)/polyamide 1212 (PA 1212) blends were compatibilized with a maleated triblock copolymer of styrene–(ethylene‐co‐butene)–styrene (SEBS‐g‐MA). Scanning electron microscopy revealed that the addition of SEBS‐g‐MA was beneficial to the dispersion of PA 1212 in the PS matrix because of the reaction between them. The variation of the fraction of SEBS‐g‐MA in the blends allowed the manipulation of the phase structure, which first formed a sheetlike structure and then formed a cocontinuous phase containing PA 1212/SEBS‐g‐MA core–shell morphologies. As a result, the mechanical properties, especially the Charpy notched impact resistance, were significantly improved with the addition of SEBS‐g‐MA. Differential scanning calorimetry (DSC) data indicated that the strong interaction between SEBS‐g‐MA and PA 1212 in the blends retarded the crystallization of PA 1212. The heat distortion temperature of the compatibilized blends was improved in comparison with that of the unmodified blend, probably because of the apparent increase in the glass‐transition temperature with an increasing concentration of SEBS‐g‐MA. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1354–1360, 2005  相似文献   

15.
Short‐glass‐fiber (SGF)‐reinforced polypropylene (PP) composites toughened with a styrene/ethylene butylene/styrene (SEBS) triblock copolymer were injection molded after extrusion. Furthermore, a maleic anhydride (MA)‐grafted SEBS copolymer (SEBS‐g‐MA) was used as an impact modifier and compatibilizer. The effects of the processing conditions and compatibilizer on the microstructure and tensile and impact performance of the hybrid composites were investigated. In the route 1 fabrication process, SGF, PP, and SEBS were blended in an extruder twice, and this was followed by injection molding. In route 2, or the sequential blending process, the elastomer and PP were mixed thoroughly before the addition of SGF. In other words, either PP and SEBS or PP and SEBS‐g‐MA pellets were premixed in an extruder. The produced pellets were then blended with SGF in the extruder, and this was followed by injection molding. The SGF/SEBS‐g‐MA/PP hybrid fabricated by the route 2 process exhibited the highest modulus, yield stress, tensile stress at break, Izod impact energy, and Charpy drop weight impact strength among the composites investigated. This was due to the formation of a homogeneous SEBS elastomeric interlayer at the SGF and matrix interface of the SGF/SEBS‐g‐MA/PP hybrid. This SEBS rubbery layer enhanced the interfacial bonding between SGF and the matrix of the SGF/SEBS‐g‐MA/PP hybrid. The correlations between the processing, microstructure, and properties of the hybrids were investigated. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1384–1392, 2003  相似文献   

16.
In this study, the molten ε‐caprolactam (CL) solution of maleated styrene‐ethylene/butylene‐styrene block copolymer (SEBS‐g‐MA) and polystyrene (PS) containing catalyst and activator were introduced into a twin screw extruder, and polyamide 6 (PA6)/SEBS/PS blends were successfully prepared via anionic polymerization of CL by reactive extrusion. The mechanical properties measurements indicated that both the elongation at break and notched Izod impact strength of PA6/SEBS/PS (85/10/5) blends were improved distinctly with slight loss of tensile and flexural strength as compared to that of pure PA6. The images of transmission electron microscopy showed that a core–shell structure with PS core and poly (ethene‐co‐1‐butene) (PEB) shell was formed within the PA6 matrix. Fourier transform infrared was used to investigate the formation mechanisms of the core–shell structure. POLYM. ENG. SCI., 53:2705–2710, 2013. © 2013 Society of Plastics Engineers  相似文献   

17.
The compatibilizing effect of the triblock copolymer poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) (SEBS) on the morphological and mechanical properties of virgin and recycled polypropylene (PP)/high‐impact polystyrene (HIPS) blends was studied, with the properties optimized for rigid composite films. The components of the blend were obtained from municipal plastic waste, PP being acquired from mineral water bottles (PPb) and HIPS from disposable cups. These materials were preground, washed only with water, dried with hot air, and ground again (PPb) or agglutinated (HIPS). Blends with three different weight ratios of PPb and HIPS (6:1, 6:2, and 6:3) were prepared, and three different concentrations of SEBS (5, 6, and 7 wt %) were used for investigations of its compatibilizing effect. Scanning electron microscopy showed that SEBS reduced the diameter of dispersed HIPS particles in the globular and fibril shapes and improved the adhesion between the disperse phase and the matrix. However, SEBS interactions with PPb and HIPS influenced the mechanical properties of the compatibilized PPb/HIPS/SEBS blends. An adequate composition of PP/HIPS, for both virgin and recycled blends, for applications in composite films with characteristics similar to those of synthetic paper was obtained with a minimal amount of SEBS and a maximal HIPS/PP ratio in the range of concentrations studied. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2861–2867, 2003  相似文献   

18.
Polypropylene/maleated (styrene‐ethylene‐butadiene‐styrene) (PP/SEBS‐g‐MA) blends reinforced with 0.2–2.5 wt% carbon nanofibers (CNFs) were prepared by injection molding. The structure, thermal, mechanical, and fracture behaviors of PP/SEBS‐g‐MA blends and their nanocomposites were studied. Wide‐angle X‐ray diffraction (WAXD) results showed that the SEBS‐g‐MA and/or CNF additions do not induce a structural change of PP. Tensile measurements showed that the Young's modulus and tensile yield strength increase with the increasing filler content. Izod impact and essential work of fracture test results demonstrated that CNFs are beneficial to improve the impact strength and specific essential work of fracture of PP/SEBS‐g‐MA blends. Therefore, tough PP‐nanocomposites can be achieved by melt‐blending low fractions of CNFs and appropriate elastomer contents. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

19.
The effects of different fillers on physical, mechanical, and optical properties of styrenic‐based thermoplastic elastomers were investigated by experimental study. Poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] block copolymer (SEBS)‐based thermoplastic elastomer composites were prepared in a co‐rotating intermeshing twin‐screw extruder, using silica and calcite as filler materials with three different particle sizes. The loading ratios in the composites were varied. Hardness, density, tensile strength, tear strength, compression set, wear resistance, transmittance, and haze measurements were performed. Thermal properties and morphological structure were investigated by differential scanning calorimeter (DSC) and scanning electron microscopy (SEM), respectively. The results show that, an interaction between silica and the polymer matrix exists, whereas calcite does not show any interaction with the polymer. Therefore, it is concluded that, calcium carbonate can be used in the composite as filler for cost efficiency, whereas silica can be used as reinforcing material in SEBS‐based thermoplastic elastomer composites, when optical properties are also concerned. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

20.
Polystyrene/organoclay nanocomposites were prepared by melt intercalation in the presence of elastomeric impact modifiers. Three different types of organically modified montmorillonites; Cloisite® 30B, 15A, and 25A, were used as reinforcement, whereas poly [styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS‐g‐MA) and poly(ethylene‐b‐butyl acrylate‐b‐glycidyl methacrylate) (E‐BA‐GMA) elastomeric materials were introduced to act as impact modifier. Owing to its single aliphatic tail on its modifier and absence of hydroxyl groups, Cloisite® 25A displayed the best dispersion in the polystyrene matrix, and mostly delaminated silicate layers were obtained in the presence of SEBS‐g‐MA. This was attributed to the higher viscosity of SEBS‐g‐MA compared with both E‐BA‐GMA and poly(styrene‐co‐vinyloxazolin) (PS). In addition, the compatibility between SEBS‐g‐MA and PS was found to be better in comparison to the compatibility between E‐BA‐GMA and PS owing to the soluble part of SEBS‐g‐MA in PS. The clay particles were observed to be located mostly in the dispersed phase leading to larger elastomeric domains compared with binary PS/elastomer blends. The enlargement of the elastomeric domains resulted in higher impact strength values in the presence of organoclay. Good dispersion of Cloisite® 25A in PS/SEBS‐g‐MA blends enhanced the tensile properties of this nanocomposite produced. It was observed that the change in the strength and stiffness of the ternary nanocomposites mostly depend on the type of the elastomeric material. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号