首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了深入探究海藻生物质的热解机理,采用表征分析和热重-质谱分析展开对海藻中多糖、蛋白质、灰分这3种主要组分参与热解规律的研究。结果表明:多糖和蛋白质的热失重范围分别为175~310℃和300~350℃;而灰分使海藻热解过程中最大热失重速率增大,且脱灰使失重峰对应的温度区间向低温段偏移。海藻热解过程中主要气体的释放规律为:由于多糖、蛋白质和灰分在参与热解过程中均产生CO_2,其释放规律曲线与热失重曲线相对应。而SO_2气体的释放主要来自于多糖中硫酸基的热解。由于多糖及脱灰后海藻不含或含有少量蛋白质,所以热解过程中无NO_2释放。  相似文献   

2.
采用基于ReaxFF反应力场的分子动力学研究了不同温度下吡咯与吡啶的热解机理。结果表明,两者的主要含氮产物与中间产物均为 HCN 和 CN,其他主要产物为 H2、C2,H2以及 C3,H4等;随着温度的升高和时间的增长,两者热解的产物数量与种类也越来越多,产物中的氮逐渐从HCN向NH3和N2转移,但吡啶的热解产物要远少于吡咯,且其热解时间也大大晚于吡咯。模拟结果与相关实验数据一致,说明反应力场分子动力学计算可以合理有效地用于吡啶与吡咯热解机理的研究。  相似文献   

3.
以生物质条浒苔为原料,石英管管式炉为反应器,在190、320、550℃热解温度下制备半焦,以X射线光电子能谱法(XPS)为主要分析手段,利用XPS检测不同热解温度下半焦表面结构变化,同时结合热解气和半焦电镜扫描的分析结果揭示条浒苔的热解机理。研究结果表明:条浒苔在低温段(190℃)热解过程中主要以脱水和部分小分子侧链的解聚为主;在中温段(190~320℃)热解过程中,蛋白质、硫酸多糖及一些脂类物质开始不断解聚和重组;在高温段(320~550℃)热解过程中,蛋白质与水溶性多糖基本热解完毕,少量纤维素碳化生成CO、CH_4气体并析出。  相似文献   

4.
采用热重分析仪(TGA)对生物质与城市污水污泥单独及共热解基本热解特性进行了考察,并结合测定的生物质中纤维素、半纤维素和木质素含量对共热解过程热解特性的影响规律发现:升温速率为20℃/min时,污泥单独热解分为水分析出、挥发分析出和焦炭化3个阶段;由生物质单独热解特性分析可知,松木屑热解特性最优,花生壳次之,狐尾藻最差;通过不同生物质添加量时的共热解过程考察,得知较高的生物质添加量更有利于共热解过程的进行;结合共热解特性变化与生物质组成的关系可知,含纤维素和木质素较多的松木屑与污泥共热解时有明显的协同作用发生,含木质素较多的花生壳也有较为明显的协同作用,含半纤维素较多的狐尾藻协同效果不明显。  相似文献   

5.
为深入了解生物质热解生物油的特性,对生物质的主要成分纤维素热解生物油的析出和演变特性进行研究。在固定床上研究纤维素在不同温度(280~550℃)下的快速与慢速热解以及不同气相停留时间对纤维素生物油特性与组成的影响。研究表明,纤维素快速热解生物油由左旋葡聚糖及大量脱水糖组成,还有少量呋喃衍生物(如糠醛、5-羟甲基糠醛等)。慢速热解时产生的脱水糖种类较少,但小分子化合物种类更多。随着气相停留时间的缩短,液体产物中左旋葡聚糖含量逐渐升高,酸、醛等小分子消失。  相似文献   

6.
选取石化污泥和烟煤,将两者按不同比例混合。采用热重分析法,在相同升温速率下,对各混合样品进行热解实验,探讨石化污泥与烟煤热解特性的差异及其共热解时石化污泥对烟煤热解过程的影响。结果表明:石化污泥与烟煤的热解过程和反应特征参数差异很大,主要表现在样品的挥发分析出温度区间、总失重率及失重速率上。同时,石化污泥的挥发分综合释放特性指数D远优于烟煤;在石化污泥和烟煤的共热解过程中,石化污泥的添加对烟煤的热解起到一定促进作用,当石化污泥掺入比例为10%时,混合物的热解特性最好。  相似文献   

7.
煤与生物质的混和燃烧是生物质利用的重要途径,两者的共热解是其中最重要的反应之一。为了研究煤与棉秆混合热解的影响因素,利用热重分析仪(Thermo Gravimetric Analyzer,简称TGA),对煤与棉秆以1:1的比例掺混的混合物进行热解过程特性研究。通过对比煤和棉秆共热解过程的差异发现:煤与棉秆混合共热解过程中两者存在一定相互影响,棉秆对煤热解在温度较低的时候有一定促进作用,但随着温度的升高逐渐表现出较明显的相互抑制作用,对于生物质与煤混烧锅炉的设计和运行具有理论指导意义。  相似文献   

8.
流化床中单颗粒纤维素热解模型研究   总被引:2,自引:0,他引:2  
为了研究生物质热解过程,该文对纤维素这种生物质中主要组份的流化床热解过程进行了数值模拟。模型在合理选取动力学模型的基础上考虑了单颗粒纤维素在流化床热解过程中由扩散和对流所引起的热量传递,包括了各种重要的气、液相热解产物的质量传递以及颗粒内部压力对过程的影响。计算结果显示,即使是对非常小的颗粒,热解反应热对热解过程的影响也至关重要;而无论是在大颗粒还是小颗粒中,热解液相中间产物流动对能量、质量传递的影响以及挥发份参加颗粒内二次反应的份额则可以忽略。计算还得到不同粒径颗粒热解的产物分布。总体来说,该模型为我们提供了一个探究纤维素热解细节的机会。计算结果可以为实际热解反应器的设计和运行提供依据。  相似文献   

9.
利用热重分析仪,研究不同比例混合的生物质三组分(纤维素、半纤维素和木质素)的热解过程,并将计算热失重曲线与实验热失重曲线进行对比研究,探讨热解过程中三组分之间的相互作用。结果表明:纤维素对半纤维素的热解无明显作用,而足量的纤维素能减少木质素的固体残渣产率;半纤维素能增大纤维素的主要热解温度区间,使纤维素的失重峰向高温侧移动和降低纤维素的失重速率,但对木质素无明显作用;木质素能降低纤维素的失重速率,且较多的木质素能增大半纤维素的失重速率。生物质混合样品的动力学分析结果进一步验证了三组分之间的相互作用。  相似文献   

10.
文中研究旨在通过密度泛函理论计算更好地从分子层面理解纤维素单元(葡萄糖和鼠李糖)与三种典型的脂肪氨基酸(脯氨酸、缬氨酸、亮氨酸)的共热解机理,深入了解生物质热解过程中纤维素组分对含氮组分热解过程的影响。研究发现葡萄糖与脯氨酸的反应能垒最高,而亮氨酸比较容易发生反应。并且葡萄糖自身也较易发生闭环反应生成呋喃类化合物(糠醛),这也是热解产物中糠醛多的原因。鼠李糖与脯氨酸热解过程中的第一个基元反应的过渡态形成的自由能能垒极高,而后生成相当稳定的缩合产物。而亮氨酸与鼠李糖的反应能垒最低,反应更容易发生。同时,我们发现鼠李糖由于其L型手性结构及6-脱氧特殊结构,在Amadori重排后发生了两次脱水形成多重度不饱和化合物。本研究为揭示生物质热解过程中糖类化合物与氨基酸之间的相互作用及含氮产物的生成途径奠定基础,对生物质的清洁高效利用有重要的意义。  相似文献   

11.
为探究低阶煤与玉米秸秆共热解过程中的协同作用,文章借助热重仪器分析了低阶煤与玉米秸秆的共热解特性,研究了升温速率对低阶煤与玉米秸秆共热解过程及其动力学参数的影响。研究结果表明:在快速升温条件下,玉米秸秆的加入促进了混合物共热解过程中挥发分的生成,提高了热解的转化率,降低了热解的活化能,两者的共热解过程产生了协同作用;随着升温速率的提高,低阶煤与玉米秸秆共热解过程的协同作用逐渐增强。  相似文献   

12.
海藻类生物质的热解和燃烧特性的研究   总被引:2,自引:0,他引:2  
研究了多种海藻的燃料特性,利用高温热显微镜观察了海藻的着火方式,并通过热重试验分析了升温速率及粒径对其热解和燃烧过程的影响.结果表明:海藻具有低熔点、易结渣、高灰分、高挥发分和均相着火的特点,其热解、燃烧过程与陆上木质类生物质差异较大,并非每种海藻都适合作燃料;综合考虑焚烧海藻类生物质的最佳方案是流化床低温燃烧方式,但要注意防止锅炉受热面的腐蚀.  相似文献   

13.
钾元素对纤维素热解特性的影响   总被引:2,自引:0,他引:2  
武宏香  李海滨  赵增立 《太阳能学报》2010,31(12):1537-1542
为考察钾元素及其存在形态对生物质热解特性的影响,实验用不同浓度的KAc和KCl溶液浸渍微晶纤维素,其热重结果表明,钾能促进纤维素低温分解、降低热解反应速率并使固体焦产率增加,能降低纤维素热解的表观活化能,活化能随钾添加量的增加而降低。通过对KCl、KAc浸渍纤维素的热重-红外(TG-FTIR)分析结果表明,钾能使纤维素热解向低小分子产物转化,但其作用能力受到添加盐种类的影响,KAc对热解反应温度、产物的影响显著大于KCl,使纤维素热解分为两段,而KCl的作用能力易受到添加量的限制。生物质中以有机结合态存在的钾对热解的过程的影响大于以无机态存在的钾。  相似文献   

14.
生物质气化过程中热解焦油的生成及其均相转化机理   总被引:1,自引:0,他引:1  
以两段式下吸气化炉焦油的衍化规律为背景对焦油的生成规律、均相转化过程中芳烃环的形成及增长机制等进行了阐述和总结。阐述了纤维素、半纤维素、木质素的热解特性及主要热解产物的生成规律,并与稻秆在200~500℃热解实验中检测得到的焦油成分进行了对比分析,两者结果基本一致。主要从官能团衍化角度分析了不同种类初级焦油的均相转化机理,阐述了单环芳香烃生成、单环向多环芳香烃转化及多环芳烃进一步聚合转化过程中的脱氢环化、脱氢加乙炔、氢转移、异构化及苯酚转化等机制。基于已有转化机理,初步构建了焦油均相转化路径图。  相似文献   

15.
热解是将固态原料转化为液体燃料、可燃气和焦的重要途径,是实现生物质资源清洁、高效利用的重要技术。将生物质与煤混合共热解是生物质资源利用的重要方法,两者混合热解不仅有助于降低CO_2的排放量,还能有效地解决能源短缺和环境污染带来的问题。文章综述了煤与生物质共热解技术的研究进展,系统地介绍了共热解过程中煤与生物质的相互作用以及热解温度、混合比例、滞留时间、升温速率、矿物质成分、物料粒径和热解反应器类型等因素对热解过程的影响,并对煤与生物质共热解技术的发展前景进行了展望。  相似文献   

16.
王博  李凯  南东宏  陆强 《新能源进展》2021,9(2):102-109
生物质热解过程中会生成一系列高附加值化合物,其中1-羟基-3,6-二氧二环[3.2.1]辛-2-酮(LAC)是主要来源于纤维素的一种重要的脱水糖化合物,在有机合成等领域具有广阔的应用前景。然而,在常规热解过程中,LAC产率极低。通过选择合适的原料、催化剂和热解条件,能够有效促进LAC的生成。基于此,本文对LAC的基本特性、热解生成机理以及选择性制备技术等研究现状进行综述,并对未来生物质选择性热解制备LAC技术需要攻克的关键问题进行了展望。  相似文献   

17.
孙云娟  蒋剑春  赵淑蘅 《太阳能学报》2016,37(11):2747-2753
利用热重分析仪对稻壳与褐煤单独及共热解过程进行研究。动力学分析选用Coats-Redfern模型和分布活化能模型(DAEM),发现Coats-Redfern模型无法在整个温度区间内对生物质的热解进行预测,只能将热解过程分为多段的单一反应;DAEM法计算得到的热解活化能随原料转化率的增大,大体呈现升高—平稳—升高的趋势;稻壳热解平均活化能约为182 k J/mol,褐煤为288 k J/mol,共热解因混合比例的不同而有所差异,为180~190 k J/mol,远小于褐煤,推测生物质的存在对煤炭热解具有一定的促进作用;对比Coats-Redfern模型和DAEM模型对于共热解过程动力学分析,发现DAEM模型更适于模拟稻壳与褐煤共热解过程中的活化能变化情况。  相似文献   

18.
以生物质主要组分纤维素为原料,在热重-红外光谱联用仪上对纤维素分别以5,10,20,40℃/min的升温速率进行了热解实验研究,考察了纤维素的热解特性及轻质气体析出规律。结果表明:较高的升温速率能促进热解反应的进行,升温速率可作为影响最大热解失重速率对应温度(Tp)的一个重要因素,Tp会随着升温速率的增大而升高;纤维素热解过程中,热解气体的最大析出峰都对应于给定升温速率下的DTG失重峰;4种主要轻质气体(H2O,CO,CO2和CH4)均表现为双峰特性,且CO气体在热解后期的析出规律与CO2,H2O和CH4气体的析出规律不同;不同官能团键的断裂和重整,致使小分子气体组分和析出量的差异很大,热解过程中,羰基(C=O)和醚键(C-O-C)的断裂对CO2的生成影响显著;在低温区间CO的析出主要源于C-O-C的断裂,而在高温区间二芳基醚的分解则是CO产生的主要原因;CH4气体的析出主要由甲氧基(CH3O-)的伸缩振动引起。  相似文献   

19.
《可再生能源》2013,(11):101-105
为了进一步了解纤维素热解过程的热流变化情况,在同步热分析(STA)与傅里叶红外光谱(FTIR)联用仪中,采用5,10,30℃/min的升温速率;在绝热加速量热仪(ARC)中,采用0.35,1,1.8℃/min升温速率,分别进行纤维素热解实验,考察热解过程的热流曲线变化规律。结果表明,升温速率为5℃/min时,纤维素的主要失重区间为316351℃,在此阶段对应着DSC曲线的一个大的吸热峰,FTIR检测到大量的气相产物的析出,吸热量为436.22 J/g。随着升温速率增至10,30℃/min时,热解主要阶段往高温区推移,吸热量也随之增至597.13 J/g和794.23 J/g;在ARC中热解时,纤维素在312℃之前即完成热解,分别放出223.1,744.1,963 J/g的热量。  相似文献   

20.
为了将生物质能高效转化为高品位不含氧的液体燃料,以纤维素为例,研究了以催化热解方式将热解产物转化为芳香烃类液体燃料的过程.实验发现,纤维素热解产生的含氧有机小分子,可以通过催化热解的形式高效转化为不含氧的芳香烃类液体.催化剂采用HZSM-5(23)、催化剂原料质量比例为5∶1、热解温度为650℃、升温速率为10000 K/s的工况为纤维素催化热解的最佳工况,单环芳烃、多环芳烃产率分别为9.90%和12.91%,总芳香烃类产率为22.81%.热解温度提升至650℃前,更高的热解温度能获得更高的芳香烃产率.继续提高热解温度,单环芳烃、多环芳烃分子间还可能进一步发生聚合反应,最终产生积碳.同时本文也提出了一种可行的纤维素催化热解中的反应途径,与本文实验结果较为匹配.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号