首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
以硝酸镍、γ-Al2O3、碳酸铵为原料,采用沉积沉淀法制备 Ni/γ-Al2O3催化剂,并将其应用于苯乙烯-异戊二烯-苯乙烯嵌段共聚物(SIS)催化加氢。通过XRD、TEM、XPS、1HNMR和DSC对催化剂和产物进行了表征。从载体类型、负载量、反应条件以及循环次数等方面对SIS加氢性能进行考察,结果表明:以环己烷为溶剂,反应温度为140 ℃,反应压力为1 MPa的条件下,催化剂展现出最优活性。聚异戊二烯的嵌段加氢度达到85%,副反应苯环的加氢度小于10%。  相似文献   

2.
采用镍系催化剂催化苯乙烯-异戊二烯-苯乙烯嵌段共聚物(SIS)加氢,对催化反应的机理及催化剂制备进行了研究,确定了催化剂制备及SIS加氢工艺条件,并对产品的结构及性能进行了考察。结果表明,采用异辛酸镍及三异丁基铝作SIS加氢催化剂,当催化剂陈化温度为50~70 ℃、陈化时间大于30 min、镍剂及铝剂质量浓度均为25~40 g/L、铝与镍的摩尔比为3.0~4.0时,催化剂活性较高。当催化剂用量为3×10-4~7×10-4 g/g时,反应1~2 h的SIS中聚异戊二烯段加氢度大于98%,苯环加氢度小于5%。SIS加氢后,力学性能及耐老化性能得到明显改善。  相似文献   

3.
苯乙烯-异戊二烯-苯乙烯嵌段共聚物(SIS)通过催化加氢可提高物理化学性能,使其更广泛地应用于工业中。以氯铂酸、尿素为原料,通过简单的浸渍还原法制备了Pt/g-C_3N_4催化剂并应用于SIS非均相催化加氢反应。采用XRD、TEM、~1HNMR和DSC对催化剂及产物进行了结构表征,考察了催化剂组成、Pt负载量、反应条件等因素对SIS加氢性能的影响。结果表明,以环己烷作溶剂,SIS用量是催化剂质量的2.3倍,在140℃、2 MPa条件下反应2 h,催化剂具有很好的活性和选择性,SIS加氢度为85%,对聚异戊二烯段碳碳双键选择性高达95%。  相似文献   

4.
以甲酸和过氧化氢反应生成的过氧甲酸为氧化剂、聚乙二醇(PEG-400)为相转移催化剂,对苯乙烯-异戊二烯-苯乙烯三嵌段共聚物(SIS)进行了环氧化,考察了SIS的环氧化反应影响因素,并探讨了环氧化反应机理。结果表明,在C=C/甲酸/过氧化氢(摩尔比)为1/2/6、反应时间为2 h、反应温度为50℃、SIS质量分数为20%时,SIS的环氧化效果最好,环氧度可达到39. 2%;加入相转移催化剂PEG-400可以大幅度提高环氧度,当PEG-400/SIS(质量比)为1. 0时,环氧度可达到59. 5%; SIS的环氧化反应主要发生在聚异戊二烯链节中1,4-结构的双键上,且反应活性由强到弱依次为顺式-1,4-结构、反式-1,4-结构、3,4-结构。  相似文献   

5.
采用共浸渍和氢气程序升温还原法, 以γ-Al2O3为载体,制备负载W质量分数30%(以WO3计)的磷化钨催化剂,对催化剂进行XRD、BET、SEM和TG/DTA表征,考察催化剂的C5石油树脂加氢反应性能,并研究助剂Ni和Co对催化剂结构和加氢反应活性的影响。结果表明,助剂的加入能改善催化剂表面活性组分的分散性和增加WP/γ-Al2O3催化剂的比表面积,对WP/γ-Al2O3催化剂活性组分与载体之间的相互作用也可能存在影响,Co或Ni对磷化钨催化剂C5石油树脂加氢反应均有不同程度的改善作用。  相似文献   

6.
郭超  高俊斌  靳广洲  赵如松 《工业催化》2014,22(11):865-868
以微波辐射法制得的大比表面积α-Al2O3为载体,负载一定量NiO制备得到NiO/α-Al2O3催化剂,采用固定床微反实验装置评价NiO/α-Al2O3催化剂用于模拟汽油选择性加氢脱二烯反应的性能,并对载体和催化剂进行XRD和BET表征。结果表明,用微波辐射法制得的Al2O3具有α-Al2O3的物相和大比表面积,负载NiO后的NiO/α-Al2O3催化剂对模拟汽油选择性加氢脱二烯具有较好的反应性能,适宜的NiO负载质量分数为24%。通过对反应条件的考察,得出24%NiO/α-Al2O3催化剂的适宜反应条件为反应温度80 ℃,常压,空速5.5 h-1,氢油体积比100∶1。  相似文献   

7.
以Al2O3质量分数为10%的Al2O3-SiO2复合氧化物为载体,通过浸渍法制备一系列不同Ni负载量的Ni/Al2O3-SiO2催化剂。运用BET、XRD、H2-TPR和NH3-TPD-MS方法研究催化剂表面性质随活性金属Ni负载量的变化规律,探讨催化剂表面性质的变化对其顺酐加氢活性、选择性及催化剂稳定性的影响。结果表明,Ni/Al2O3-SiO2催化剂中的Ni质量分数由5.0%增加至12.5%时,γ-丁内酯收率由7.9%快速增至38.9%,进一步增加Ni质量分数至20.0%,γ-丁内酯收率增加趋于平缓。催化剂中Ni活性物种与催化剂酸性中心的数量是影响催化剂顺酐加氢活性的主要原因。  相似文献   

8.
以γ-Al2O3为载体采用分步浸渍法制备了不同金属氧化物进行载体改性的Cu/B/M/Al2O3(M=Mg,Ca,Ni)催化剂,并测试了其催化醋酸仲丁酯加氢反应的性能。结果表明,以NiO进行载体改性的催化剂导致酯加氢反应中大量酸催化产物及烃类出现;以MgO进行载体改性不利于金属Cu的分散且催化剂的结构稳定性较差;以CaO对γ-Al2O3载体进行改性不仅能够促进金属Cu的分散,提高催化剂的酯加氢活性和产物选择性,而且可以有效减少反应中非活性碳物种在催化剂表面的沉积。  相似文献   

9.
采用浸渍法制备了不同种类助剂改性的Ni-M/γ-Al2O3催化剂,通过XRD、低温氮气物理吸附和FT-IR等手段对改性前后的催化剂进行表征,并考察催化剂在1,4-丁炔二醇加氢反应中的活性和抗水合性能。结果表明,在所选助剂中,SiO2的引入使催化剂维持了较高的加氢活性,同时,显著提高了Ni/γ-Al2O3催化剂的抗水合性能,γ-Al2O3表面Si-O-Al的形成是SiO2抑制γ-Al2O3发生水合的直接原因。  相似文献   

10.
汪国辉  刘辉  陈晓蓉  梅华 《工业催化》2014,22(9):709-714
采用等体积浸渍法制备CeO2改性Ni/γ-Al2O3催化剂,通过BET、XRD、H2-TPR和SEM等对催化剂结构及物化性能进行表征,考察Ni-CeO2/γ-Al2O3催化剂对顺酐催化加氢制备丁二酸酐催化性能的影响。结果表明,引入适量CeO2可提高催化剂活性组分Ni的分散度,增加催化剂比表面积,提高催化剂热稳定性。采用负载CeO2质量分数5%的Ni-CeO2/γ-Al2O3催化剂,在反应温度120 ℃、反应压力2.0 MPa和空速0.6 h-1条件下,顺酐转化率为99.5%,丁二酸酐选择性为99.4%。  相似文献   

11.
以二氯二茂钛(Cp2TiCl2,简称Ti)为催化剂、n-BuLi为引发剂,对苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)进行加氢反应制备苯乙烯-乙烯/丁烯-苯乙烯三嵌段聚合物(SEBS),考察了活化过程中氢气压力、活化时间、n-BuLi用量等条件对SBS加氢反应的影响。结果表明,在溶有10 g SBS干胶的200 mL环己烷溶剂中,Ti催化剂的加入量为0.025 mmol、氢气压力为1.6 MPa、浓度为2.5 mol/L的n-BuLi用量为3 mL、活化时间为3 h以及活化温度为25℃的条件下,SEBS的加氢度可以达到67.0%以上。  相似文献   

12.
以拟薄水铝石为前驱体,经不同温度焙烧制得Al2O3载体,等体积浸渍法制备Ni/Al2O3催化剂,采用X射线衍射、N2-物理吸附、扫描电镜、程序升温还原等对载体及催化剂进行表征,考察载体焙烧温度对Al2O3载体性质及其负载的镍基催化剂催化性能的影响。结果表明,随着焙烧温度的升高,Al2O3载体的比表面积减小,平均孔径增大,结晶度升高,晶粒度增大,晶型逐步转变为γ-Al2O3[(500~800) ℃]、δ-Al2O3[ (900~1 100) ℃]和α-Al2O3[(1 250) ℃]。合成气制甲烷催化剂活性变化趋势为:Ni/γ-Al2O3>Ni/δ-Al2O3>Ni/α-Al2O3,其中,800 ℃焙烧的γ-Al2O3负载的Ni基催化剂因稳定的晶型结构以及与NiO之间适当的相互作用而表现出最佳的催化活性及稳定性。  相似文献   

13.
为了获得高水热稳定的负载Ni催化剂,延长催化剂在含水液相体系中的使用寿命,以不同温度焙烧的SiO2-Al2O3为载体,采用浸渍法制备Ni/SiO2-Al2O3催化剂,通过吡啶-原位傅立叶变换红外光谱、X射线衍射、NH3-程序升温脱附和H2-程序升温还原等方法进行表征,以水相1,4-丁炔二醇加氢为探针反应,研究载体焙烧温度对Ni/SiO2-Al2O3催化剂催化加氢性能及含水体系中稳定性的影响。结果表明,在(400~800) ℃,随着载体焙烧温度升高,活性组分Ni存在状态及催化剂加氢活性变化较小,但催化剂的水热稳定性下降,造成这一现象的原因是随着载体焙烧温度升高,载体表面SiO2聚集,暴露的Al3+增加,载体水合程度增大。载体焙烧温度400 ℃时,Ni/SiO2-Al2O3催化剂表现出最佳的水热稳定性。  相似文献   

14.
以拟薄水铝石为原料,通过高温焙烧制备γ-Al2O3,并以γ-Al2O3为载体,通过吸附还原法制备了3Au/γ-Al2O3催化剂[其中3为m(Au)∶m(催化剂)=3%]。通过TEM、XRD、ICP-OES和BET对催化剂的形貌和结构进行了表征,考察了3Au/γ-Al2O3催化剂在1,2-丙二醇氧化酯化制备高附加值C3化学品的催化性能。结果表明,Au颗粒的高效分散有助于提高催化剂的性能;在优选条件下,以甲醇为溶剂,无碱助剂的体系中1,2-丙二醇的转化率为63.0%,C3化学品总选择性为63.6%;并且发现增加催化剂中Au负载量,可能会影响反应的发生,从而降低主产物的选择性。  相似文献   

15.
以环烷酸镍(简称Ni)/三异丁基铝(简称Al)为催化体系,对自制的苯乙烯-异戊二烯-丁二烯三元无规共聚物(SIBR)进行加氢反应,确定了加氢反应条件,并对氢化SIBR进行了表征。结果表明,Al/Ni(摩尔比)变化时,SIBR中聚丁二烯链段的1,2-结构比1,4-结构易于加氢,聚异戊二烯链段的3,4-结构比1,4-结构更易加氢;在催化剂用量为2 mg/g、Al/Ni为7、反应温度为60℃、反应压力为4 MPa的条件下,SIBR的最高加氢度可达98%;氢化SIBR的数均分子量和重均分子量均比SIBR略有增大,分子量分布亦略有变宽,但仍呈现窄分布的特点;SIBR中聚丁二烯链段和聚异戊二烯链段均已发生氢化反应,而苯乙烯链段基本不发生氢化反应,说明该催化体系具有较高的催化活性和选择性。  相似文献   

16.
研究了钼元素及其添加量对镍基催化剂在双环戊二烯(DCPD)加氢反应中耐硫特性的影响规律。催化 剂∶DCPD =1∶10,反应温度150℃,压力3.5 MPa,转速600 r/min,噻吩浓度为:500 mg/L时,Ni/γ-Al2O3催化剂的双环戊二烯8、9位双键的加氢速率显著降低,3、4位双键的加氢活性完全抑制; 而NiMo0.2/γ-Al2O3催化剂,在4 h内完成加氢反应,四氢双环戊二烯(endo-THDCPD)收率达到98%,抗硫特性显著提高。不同镍钼比的系列催化剂中,NiMo0.2/γ-Al2O3具有最好的加氢活性与耐硫特性。0~2000 mg/L噻吩浓度内,低浓度条件下,NiMo0.2/γ-Al2O3催化剂对双环戊二烯的加氢活性高,选择性好;随着噻吩浓度增加,催化性能有所下降,2000 mg/L时,加氢反应延长至6 h,endo-THDCPD收率降至95%。  相似文献   

17.
Ni(naph) 2 /Al(i-Bu) 3 常温、常压催化SIS加氢的研究结果表明 ,反应只发生在PIp中的不饱和双键上 ,苯环不参与加氢反应 ;实验条件下 ,PIp中的 3,4-链节、1,4-链节具有相同的加氢活性 ;在 5 0℃、0 .1MPa氢压、1.90× 10 -4 mol/g·SIS的Ni用量、Al与Ni的摩尔比为 5时 ,SIS的加氢度可达92 .6 %;陈化后的催化剂显示出较高的加氢活性。  相似文献   

18.
以四硫代钼酸铵溶液和硝酸镍溶液为浸渍液,根据活性组分Ni和Mo浸渍顺序的不同,采用真空饱和浸渍法制备了MN系列和NM系列 NiMoS/γ-Al2O3催化剂。在固定床加氢中试反应装置上研究了NiMoS/γ-Al2O3催化剂对二苯并噻吩加氢反应的催化性能,结果表明,NiMoS/γ-Al2O3催化剂对二苯并噻吩加氢反应具有良好的活性和选择性。Ni助剂的加入,有利于二苯并噻吩加氢反应的活性和选择性。MN-0.3为最优NiMoS/γ-Al2O3催化剂。在空速10 h-1、反应压力2.0 MPa、氢油体积比300∶1、氢气预处理温度320 ℃和反应温度300 ℃条件下,催化剂对二苯并噻吩加氢反应转化率达83.9%,加氢反应活性较高。  相似文献   

19.
研究了不同载体(γ-Al2O3、HZSM-5、TiO2、SiO2和MgO)负载Fe催化剂上CO还原NO反应及CO同时还原NO和SO2反应。结果表明,Fe/γ-Al2O3催化剂对CO与NO反应具有良好的催化活性,但随着反应时间的延长,催化剂很快失活;在CO和NO反应中加入SO2,可以明显改善Fe/γ-Al2O3催化剂对CO还原NO反应的活性稳定性;O2和H2O对催化剂活性的影响较大,CO2对催化剂的影响较小。XRD结果表明,FeS2是催化剂的活性中心,在CO与NO反应后,FeS2转变为催化惰性的Fe7S8而导致催化剂活性下降;在CO与NO及SO2反应体系中引入O2后,Fe/γ-Al2O3催化剂上的活性组分FeS2被氧化为Fe2O3,导致催化剂失活。  相似文献   

20.
采用液相共沉淀法制备了TiO2-γ-Al2O3复合催化剂,在其最佳合成条件下,比较了太阳光/TiO2-γ-Al2O3与UV/TiO2处理垃圾渗滤液的性能。结果表明,当Ti(SO42与Al2(SO43·18H2O摩尔配比为1:2、聚乙二醇2000投加质量分数为1.25%、焙烧温度为650℃时,TiO2-γ-Al2O3的催化活性最强。当催化剂投加量与垃圾渗滤液COD质量比为1.75、反应时间为90 min、渗滤液pH为3时,太阳光/TiO2-γ-Al2O3对COD、NH4+-N的去除率几乎达到最高,分别为81.97%和54.95%,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号