首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
葛金朋  李晶  史成斌  王鹏 《钢铁》2016,51(11):30-35
 利用实验室渣-钢平衡试验研究了高碱度精炼渣对GCr15轴承钢中[w(T[O])]和夹杂物的影响。结合试验结果和热力学分析,探讨了钢中[w(T[O])、]夹杂物尺寸分布和粒径大小的变化规律,以及氧化物夹杂的转变过程。研究结果表明,碱度为6时,精炼渣(59.4%CaO-24.8%Al2O3-9.8%SiO2-6%MgO)可将钢中[w(T[O])]控制在0.000 6%以内,氧化物夹杂平均尺寸最小为2.26 μm。随着钢中[w([Ca])]和[w([Mg])]的增加,钢中氧化物夹杂转变过程为Al2O3→MgO·Al2O3→MgO→CaO-Al2O3-MgO复合夹杂物(核心为MgO,外围包裹着CaO-Al2O3)。渣-钢反应前期钢中以MgO·Al2O3为主,后期以MgO和CaO-Al2O3-MgO复合夹杂物为主。氧化物夹杂转变的试验结果与热力学分析结果相一致,大多数氧化物夹杂尺寸小于5 μm。  相似文献   

2.
王昆鹏  姜敏  赵昊乾  王新华  王郢 《钢铁》2016,51(1):33-38
 借助Aspex Explorer全自动分析技术对日本神户制钢和国内某钢铁厂所产切割丝用盘条的夹杂物分析检测,详细讨论氧化物夹杂的尺寸、数量密度、成分以及形态。结果表明:神户所产盘条中夹杂物数量少、横截面尺寸均在5 μm以下,存在两类夹杂物,即富SiO2的SiO2-MnO-Al2O3-(R2O,R=Na、K)系和低熔点的CaO-SiO2-Al2O3-MnO-(MgO)系夹杂物,两类夹杂物沿轧向均能很好变形,国内某厂所产盘条中夹杂物也分为两类:SiO2-MnO-Al2O3以及CaO-SiO2-Al2O3-MnO-(MgO),夹杂物数量多,变形差且检测到横截面尺寸5 μm以上的夹杂物。盘条化学成分分析表明,神户盘条中[w([Al]s)]为0.000 4%~0.000 6%,[w(T[O])]为0.001 2%~0.001 3%,国内盘条[w([Al]s)]为0.000 5%~0.000 6%,[w(T[O])]为0.001 5%~0.001 6%。  相似文献   

3.
高胜亚  姜敏  侯泽旺  王新华 《钢铁》2017,52(4):25-30
 为了研究高碳含硫铝镇静钢中夹杂物的控制策略,利用ASPEX自动扫描电镜研究了钙处理对高碳铝镇静钢中夹杂物形貌、成分等特征的影响。结果表明,钙处理后夹杂物并未由LF精炼结束时的MgO·Al2O3转变为低熔点钙铝酸盐,而是转变为[x(MgO·Al2O3)·(1-x)CaS]复杂成分体系,夹杂物中MgO/Al2O3的质量比维持在1[∶]3不变。原因在于,钢液中[w([S])/w(T[O])]比较高,导致钙主要与硫结合生成CaS,而较少参与MgO·Al2O3的改性;精炼渣碱度低使得钙无法还原MgO。在此基础上对钙处理时夹杂物的生成与转变机理进行了讨论。  相似文献   

4.
在1 873K,MgO坩埚内进行了VOD精炼渣与SUS444铁素体不锈钢之间的脱氧平衡试验,考察了精炼渣对不锈钢中T.O含量及夹杂物组成、数量和尺寸分布的影响。结果表明,脱氧终点钢中w(T.O)=0.006 3%~0.007 4%,提高精炼渣碱度,降低渣中Al2O3的活度,有利于降低钢中T.O含量。精炼渣碱度增加,试样中单位面积夹杂物的个数及夹杂物的平均面积分数都减小。降低渣中Al2O3含量,夹杂物平均粒径也降低。加入脱氧合金后,钢中夹杂物主要为Al2O3、MgO·Al2O3及含有少量SiO2、MnO的复合氧化物;钙处理后,钢中夹杂物主要为球形的MgO·Al2O3-CaO。随着精炼渣中a(MgO)/a(Al2O3)的增加,MgO·Al2O3夹杂物中xMgO/xAl2O3随之增加。根据试验,R=3.5、w(Al2O3)=10%、w(MgO)=10%、w(CaF2)=5%的精炼渣具有良好的精炼效果。  相似文献   

5.
通过工业试验研究了Q345钢在钢包精炼过程和RH处理过程中夹杂物成分的变化。结果表明:通过与高碱度、低氧化性渣的反应,钢水中的大部分Al2O3夹杂物转变为具有较低熔点的CaO-Al2O3-MgO夹杂物。研究了RH处理后钙的加入量对夹杂物成分的影响。结果表明:当钢包顶渣的成分控制在w(CaO)=50%~55%、w(CaF2)=5%~8%、w(Al2O3)=25%~30%、w(SiO2)=5%~8%、w(MgO)=5%~10%、w(FeO)<1%,经过钢包精炼和RH处理,每吨钢水中加入0.12 kg钙后,钢水中夹杂物的平均成分处于低熔点(≤1 500℃)区。  相似文献   

6.
杨光维  郝鑫  杨叠  王新华  黄福祥  王万军 《钢铁》2014,49(11):31-35
 研究了EAF→LF→VD→软搅→CC工艺生产GCr15轴承钢冶炼过程钢中T[O]及非金属夹杂物的变化情况。通过将电炉出钢碳质量分数控制为0.2%~0.4%、出钢加铝强脱氧及造预精炼渣、LF精炼过程造高碱度强还原性炉渣、VD真空强搅拌及防止中间包二次氧化,可以生产[w(T[O])]等于8×10-6的轴承钢。在炉外精炼过程中夹杂物经历了Al2O3→MgO·Al2O3→CaO-MgO-Al2O3演变。LF精炼过程夹杂物平均尺寸减小,经过VD真空处理后尺寸增加,接着在软搅和中间包过程继续减小。利用VD真空处理可以去除高达74%的夹杂物。  相似文献   

7.
吕沙  吴光亮 《钢铁》2015,50(7):32-37
 对采用“EBT→LF→VD”工艺路线生产50Cr5MoV锻钢轧辊炼钢过程的全氧质量分数和夹杂物类型与数量进行了分析。结果表明:LF精炼后钢液中[w(T[O])]平均为0.004 7%,VD出站[w(T[O])]为0.001 4%,中间包[w(T[O])]为0.001 55%,铸坯[w(T[O])]为0.001 8%,轧材中[w(T[O])]降低至0.001 0%。LF精炼初期,钢中夹杂物主要是不规则的Al2O3夹杂,其中96.75%的夹杂物尺寸小于10 μm。LF精炼结束后,大量夹杂物转变成以CaO-Al2O3-SiO2为主要成分的0~1 0 μm复合氧化物夹杂。钢水从VD真空精炼炉向中间包转移过程中,由于保护性浇注效果差,二次氧化严重造成钢水夹杂逐渐增多,其中夹杂物主要为球形的[mCaO·nAl2O3]复合夹杂物。铸坯中99.65%的夹杂物尺寸小于10 μm,其中大部分为球形钙铝酸盐夹杂物,还有少量球状硅铝酸钙复合夹杂物。轧材中98.77%的夹杂物尺寸小于10 μm。通过对炼钢过程中各工序的工艺优化,可实现对夹杂物的有效控制, 从而确保50Cr5MoV合金铸钢的产品质量。  相似文献   

8.
系统分析和研究了采用“EAF→ LF→VD→CC”工艺流程生产试验钢时,各工序的全氧与氮含量的变化情况、钢液中非金属夹杂物的生成与变化以及精炼初渣对夹杂物去除的影响.结果表明:试验钢在LF精炼过程中w(T.O)平均下降42.83%,经VD真空处理后w(T.O)和w(N)平均下降48.77%和10.72%.在LF精炼过程中,钢液中非金属夹杂物按“Al2O3系夹杂物→MgO-Al2O3系夹杂物→CaO-MgO-Al2O3系夹杂物”顺序转变,其中MgO-Al2O3系夹杂物向CaO-MgO-Al2O3系夹杂物转变是由外向内逐步进行,并且夹杂物中CaO与MgO互不相溶.精炼初渣碱度控制在2.5左右对于炉渣吸收夹杂较为有利.  相似文献   

9.
研究了国内某厂生产X80管线钢精炼过程中夹杂物的转变.BOF出钢阶段加铝脱氧,钢中夹杂物以伴有极少量MgO的Al2O3为主;LF过程采用高碱度高还原性渣精炼,钢中Al2O3夹杂物向钙铝酸盐和CaO-MgO-Al2O3复合夹杂物转变,平均成分靠近低熔点区;RH真空处理后,夹杂物中Al2O3和MgO的含量减少,CaO含量增加,夹杂物成分分布较为分散;钙处理后,钢中CaO-MgO-Al2O3复合夹杂比例明显减少,CaO与CaS比例明显增加,夹杂物平均成分已经远离低熔点区,达到了高品质管线钢的冶炼效果.  相似文献   

10.
李海波  李宏  王新华  陈天明  杨素波 《钢铁》2007,42(10):43-46
为优化生产工艺,改变冶炼方法和炉渣组成,进行了齿轮钢20CrMoH生产试验,分析讨论了生产过程钢中的T[O]、低熔点钙铝酸盐非金属夹杂物的形成过程.结果表明,出钢脱氧时加入足够的Al,钢水的T[O]含量降低非常快,当w(FeO) w(MnO)≤0.5%时,SiO2已经成为钢水氧化的氧源;选用w(CaO)=55%~60%,w=(Al2O3)35%~40%,w(MgO)≤6%的CaO-Al2O3-MgO渣系精炼,可以得到w(T[O])=0.0010%的钢水,夹杂物的变化过程和Ca处理时夹杂物的转变过程类似;钢包渣中w(CaO)/w(Al2O3)的比值为1.50~1.65时,能使钢液中的Al2O3夹杂转变为低熔点的钙铝酸盐,得到与钢液Ca处理相同的效果,在RH真空处理后不再需要钙处理.  相似文献   

11.
为了研究SWRH82B硬线钢通过控制精炼渣的组成实现夹杂物塑性化的可行性,通过对炼钢过程中各工序的精炼渣和钢液进行取样,并对精炼渣成分、钢液总氧含量以及夹杂物的形貌、尺寸、成分等进行检测分析。结果表明,采用无铝化脱氧,并将精炼渣的碱度控制在0.8~1.2,Al2O3质量分数控制在10%以下时,能使CaO- Al2O3- SiO2系夹杂物成为塑性夹杂物;钢水经过RH真空精炼后夹杂物尺寸变大,并且夹杂物的Al2O3质量分数降低,SiO2质量分数升高,通过相关检测分析了造成此现象的原因,并提出了改进措施。  相似文献   

12.
采用铁水脱硫-转炉-LF炉-RH-钙处理-连铸工艺路线,出钢采用Al脱氧,造高碱度低氧化性精炼渣,生产X80管线钢。研究了精炼过程中夹杂物的成分、尺寸、形貌和数量等变化情况,确定了钢中夹杂物在不同精炼环节的变化规律,探讨了夹杂物中MgO和CaO的来源。结果表明,采用该冶炼工艺路线所生产的管线钢总氧含量在10-12ppm之间,钢中20µm以下夹杂物所占比例达到了90%,钢水具有很高的洁净度水平。在精炼过程中夹杂物MgO含量逐渐降低、CaO含量逐渐增加,精炼结束后钢中夹杂物为球形MgO-Al2O3-CaO类夹杂物,MgO、Al2O3和CaO平均含量分别2.6%、53.7%和43.7%,该类夹杂物外层为CaS,在精炼钢水温度下为液态,表明钢中夹杂物得到了有效的变性处理。在钢中夹杂物去除效果方面,软吹氩工艺对于10um以下夹杂物的去除效果最好,去除率达到了81%。  相似文献   

13.
采用光学显微镜和扫描电镜对超低碳深冲钢冶炼全流程中的夹杂物进行分析。结果表明,RH精炼过程中的夹杂物由FeO转变为Al2O3类脱氧产物;中间包浇铸过程中的夹杂物以Al2O3·TiOx类夹杂为主,但受到钢包渣和中间包渣的影响;连铸过程中的夹杂物以铝钛夹杂为主,夹杂物的形成与结晶器内的卷渣紧密相关。  相似文献   

14.
 为了研究超低碳钢炼钢过程中夹杂物的具体演变规律,利用夹杂物自动分析系统研究了硫质量分数分别为0.010%和0.015%的两炉次(S100炉次和S150炉次)超低碳汽车外板烘烤硬化钢(bake hardening steel,简称BH钢)从RH终点到铸坯过程中夹杂物形貌、成分、数量、尺寸的演变,并利用X射线荧光光谱仪和X射线衍射仪结合RH精炼渣和中间包覆盖剂熔渣的成分进行对比分析。结果表明,BH钢中夹杂物的主要类型为Al2O3、MnS、Al2O3+MnS和含硅类夹杂物(其中含硅类夹杂物主要是Al Si O夹杂,不包括纯硅、SiC、SiO2)。由于BH钢中锰和硫质量分数较高,凝固过程中MnS大量析出,使得铸坯中MnS夹杂物数量密度和夹杂物总数量密度显著增加。硫质量分数为0.010%和0.015%的两炉次钢在RH和中间包中MnS夹杂物数量密度无明显差异,由于MnS主要在凝固过程中析出,S150炉次在铸坯中的MnS明显多于S100炉次。精炼渣中w((FeO+MnO))较高,w((CaO))/w((Al2O3))比低,会导致RH终点Al2O3夹杂物较多。在浇注过程中,引流砂的流入会导致中间包覆盖剂熔渣中SiO2质量分数增高,造成钢液中Si Al O等夹杂物的数量密度明显增加。结晶器过程中Al2O3夹杂不断聚集长大、上浮去除,使铸坯中Al2O3和Al2O3+MnS夹杂物数量密度减少,尺寸增大。  相似文献   

15.
 为了更好地控制CSP工艺下电工钢中的夹杂物,研究了涟钢CSP工艺含铝电工钢夹杂物在精炼连铸热轧过程中的演变机理。RH合金化后钢中夹杂物有Al2O3,Al2O3 SiO2和Al2O3 CaO CaS 主要3种,RH出站和中包钢液中的夹杂物主要是Al2O3 CaO CaS和少量单独的Al2O3和CaS夹杂。减少钢液中夹杂物的主要措施是降低RH出站前的顶渣氧化性。热轧卷材样中夹杂物与钢液中夹杂物不同,主要是AlN和MnS,夹杂物总量与氮、硫质量分数呈正相关,氮元素的影响最显著。  相似文献   

16.
超低碳钢钢中夹杂物的研究   总被引:1,自引:0,他引:1  
唐复平  常桂华  栗红  陈本文 《钢铁》2007,42(1):20-22,30
为控制超低碳钢中的簇状夹杂物,对超低碳钢中的夹杂物和与全氧含量的关系进行了研究.钢中的夹杂物主要是Al2O3夹杂和Al2O3-TiN复合夹杂,独立夹杂物尺寸大部分小于10 μm.铸坯中w(TO)小于0.003 0%时,钢中仍存在簇状Al2O3夹杂;Al2O3簇状夹杂物与铸坯中全氧含量没有直接关系,所以钢中的全氧含量不能完全代表钢中夹杂物的水平.钢中的簇状Al2O3夹杂物与RH脱碳结束活度氧有关,要控制超低碳钢中簇状Al2O3夹杂物必须稳定生产工艺,减少RH加铝升温,使RH脱碳结束活度氧保持在一定范围.  相似文献   

17.
摘要:为有效控制30Cr1Mo1V汽轮机转子钢中非金属夹杂物和有害杂质元素含量,利用热力学软件FactSage 8.1,计算了1873K下CaO-SiO2-Al2O3-5%MgO系精炼渣与30Cr1Mo1V钢液平衡时的等[O]线、等[S]线,以获得最优精炼渣成分范围。研究了不同精炼渣对钢中氧、硫含量,夹杂物特性的影响,继而揭示了钢中典型MgO·Al2O3夹杂物的热力学形成机制以及夹杂物与精炼渣之间的成分关系,并构建了“钢 渣”界面MgO·Al2O3夹杂物运动模型。实验和模型结果表明,优化渣系50.4%CaO-40-3%Al2O3-4.3%SiO2-5%MgO对钢液脱氧、脱硫和非金属夹杂物控制的效果明显,模型预测结果与夹杂物去除率对应关系良好。  相似文献   

18.
李牧明  于会香  潘明  白皓 《钢铁》2019,54(6):37-42
 为了研究精炼渣对高锰钢中非金属夹杂物的影响,采用渣/钢平衡的试验方法研究了MgO SiO2 Al2O3 CaO系精炼渣对Fe xMn高锰钢(x=10%, 20%)中非金属夹杂物的影响。结果表明,无顶渣情况下,高锰钢中夹杂物主要为MnO类和MnO Al2O3类2类。加入精炼渣后,夹杂物类型发生了变化,主要有 MnO类、MnO SiO2类和 MnO Al2O3 MgO类3类,其中MnO SiO2类数量最多。采用ASPEX扫描电镜对夹杂物的平均成分进行分析,无顶渣时高锰钢中夹杂物的成分主要是MnO,质量分数在95%以上,并含有质量分数为4%左右的Al2O3。加入精炼渣后,夹杂物中MnO质量分数降低,SiO2质量分数显著增加,MgO质量分数增加。热力学计算结果表明,加入精炼渣后,渣/钢间反应4[Al]+3(SiO2)=2(Al2O3)+3[Si]和2[Mn]+(SiO2)=2(MnO)+[Si]的吉布斯自由能均小于零,这说明在本试验条件下,钢液中的[Al]和[Mn]会还原渣中SiO2,生成的[Si]进入钢液,进而与钢液中的[O]结合,导致夹杂物中SiO2增加。  相似文献   

19.
为了降低钢的T[O]含量和生成较低熔点的非金属夹杂物以改善合金结构钢的抗疲劳破坏性能,在炉外精炼中采用了高碱度和高Al2O3含量的渣系.研究发现LF和RH精炼结束时钢液T[O]含量均随炉渣碱度增加而降低,在炉渣Al2O3含量低于25%时,T[O]随炉渣Al2O3含量减少而降低,而当炉渣Al2O3超过25%后,T[O]则随炉渣Al2O3含量增加而降低.精炼过程钢液中夹杂物按"Al2O3系夹杂物→MgO-Al2O3系夹杂物→CaO-MgO-Al2O3系夹杂物"顺序发生转变,其中MgO-Al2O3系夹杂物向CaO-MgO-Al2O3系夹杂物的转变是由外向内逐步进行的,转变速度相对较慢,因而致使LF结束时钢中仍存在许多尚未转变的Mgo-Al2O3系夹杂物.钢液T[O]对夹杂物转变有显著影响,降低T[O]含量有利于生成较低熔点的CaO-MgO-Al2O3系夹杂物.  相似文献   

20.
刘浏  范建文  王品  王乐 《钢铁》2017,52(9):34-41
 为了控制轴承钢中大型夹杂物,采用在LF精炼初渣中添加示踪剂的方法, 确定轴承钢大型夹杂物的来源。 初期脱氧夹杂一直悬浮在钢中,未与炉渣接触,不含BaO成分,在钢中残留量占全部氧化物夹杂的10%~15%;内生夹杂由渣钢反应生成,随精炼进行,含BaO夹杂的比例升高。无渣冶炼如RH可抑制该类夹杂生成,在钢中残留量约占25%~40%;卷渣夹杂由钢渣搅动生成,绝大多数含有BaO成分,随精炼进行尺寸逐渐减小,残留在钢中的比例约占50%~60%。因此,降低钢中大型夹杂物的技术措施是严格控制脱氧前钢水的氧活度[aO,]降低[w(T[O]);]尽可能避免或减弱渣钢反应强度,或降低精炼渣的还原势;优化钢水搅拌强度,减少卷渣并促进微细夹杂物聚合上浮。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号