首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the mechanical behavior and thermal properties of cellular mullite bodies obtained by thermal direct-consolidation of foamed aqueous suspensions of mullite-bovine serum albumin (BSA) and mullite-BSA-methylcellulose (MC) were studied. The mechanical behavior of cellular mullite materials sintered at 1600 °C was evaluated by diametral compression at room temperature, 1000 °C and 1300 °C. The variation in the thermal diffusivity and thermal conductivity at temperatures up to 900 °C was determined using the laser-flash method. The results of the mechanical and thermal evaluation were analyzed based on the porosity features of the sintered materials, which was determined in turn by the starting system used for shaping the bodies.  相似文献   

2.
《Ceramics International》2015,41(7):9009-9017
Porous mullite ceramics were prepared via foam-gelcasting using industrial grade mullite powder as the main raw materials, Isobam-104 as the dispersing and gelling agent, sodium carboxymethyl cellulose as the foam stabilizing agent, and triethanolamine lauryl sulfate as the foaming agent. The effects of processing parameters such as type and amount of additive, solid loading level and gelling temperature on rheological properties and gelling behaviors of the slurries were investigated. The green samples after drying at 100 °C for 24 h were fired at 1600 °C for 2 h, and the microstructures and properties of the resultant porous ceramic samples were characterized. Based on the results, the effects of foaming agent on the porosity level, pore structure and size and mechanical properties of the as-prepared porous mullite ceramics were examined. Porosity levels and pore sizes of the as-prepared samples increased with increasing the foaming agent content up to 1.0%, above which both porosity levels and pore sizes did not change. The compressive strength and flexural strength of the as-prepared sample with porosity of 76% and average pore size of 313 μm remained as high as 15.3±0.3 MPa and 3.7±0.2 MPa, respectively, and permeability increased exponentially with increasing the porosity.  相似文献   

3.
ABSTRACT

To further improve the thermal insulation performance of porous mullite ceramics used in important industrial sectors, a combined foam-gelcasting and pore-former addition approach was investigated in this work, by which hierarchical porous mullite ceramics with excellent properties, in particular, thermal insulation property, were prepared. Both mesopores (2–50?nm) and macropores (117.8–202.7?μm) were formed in porous mullite ceramics resultant from 2?h firing at 1300°C with various amounts of submicron-sized CaCO3 pore former. The former mainly arose from the decomposition of CaCO3, and the latter from the foam-gelcasting process. The porous samples prepared with CaCO3 addition had low linear shrinkage of 2.35–4.83%, high porosity of 72.98–79.07% and high compressive strength of 5.52–14.82?MPa. Most importantly, they also exhibited a very low thermal-conductivity, e.g. 0.114?W?m?1?K?1 at 200°C, which was much lower than in the cases of their counterparts prepared via the conventional foam-gelcasting route.  相似文献   

4.
The present work aims at studying the effect of the sintering temperature and magnesite addition on the structure and final properties of silicate ceramics tapes. A kaolinitic clay from Algeria was selected and mixed with different magnesite contents (≤12 mass%). Tape casting process was used to produce the green tapes in an aqueous system with optimized amount of surfactants. The green tapes were fired from 1000°C to 1200°C using a dwelling time of 30 minutes. The effect of the dwelling time was investigated for a firing temperature of 1200°C namely: 30 minutes, 1 hour 30 minutes and 3 hours for samples with 6 and 12 mass% of magnesite. Regarding firing conditions, crystalline phases, thermal conductivity, porosity, and flexural strength were analyzed. The results showed that increasing the sintering temperature to 1200°C tended to significantly decrease the total porosity of samples, which led to the improvement of the stress to rupture values. Specimens with 6 and 12 mass% sintered during 3 hours exhibited highest stress to rupture values (≈117 MPa) and lowest thermal conductivity (<0.2 W.m−1.K−1) and moderate open porosity (27%). The as-obtained ceramics appeared promising for further utilization in refractory industry, thanks to the presence of both cordierite and mullite phases.  相似文献   

5.
To obtain composite ceramics with excellent thermal shock resistance and satisfactory high?temperature service performance for solar thermal transmission pipelines, SiC additive was incorporated into Al2O3?mullite?ZrO2 composite ceramics through a pressureless sintering process. The effect of the SiC additive on thermal shock resistance was studied. Also, the variations in the microstructure and physical properties during thermal cycles at 1300 °C were discussed. The results showed that both thermal shock resistance and thermal cycling performance could be improved by adding 20 wt% SiC. In particular, the sample with 50 wt% Al2O3, 35 wt% Coal Series Kaolin (CSK), 15 wt% partially yttria?stabilized zirconia (PSZ), and 20 wt% SiC additional (denoted as sample A2) exhibited the best overall performance after firing at 1600 °C. Furthermore, the bending strength of sample A2 increased to 124.58 MPa, with an increasing rate of 13.63% after 30 thermal shock cycles. The increase in thermal conductivity and the formation of mullite were the factors behind the enhancement of thermal shock resistance. During the thermal cycles, the oxidation of SiC particles was favorable as it increased the microstructure densification and also facilitated the generation of mullite, which endowed the composite ceramics with a self?reinforcing performance.  相似文献   

6.
《Ceramics International》2019,45(12):14517-14523
High-strength insulating ceramic materials were prepared using lightweight mullite microspheres with dense surfaces and high internal porosity as the main raw material and silica sol as a binder. The effects of AlF3·3H2O content on the in situ formation and growth of mullite whiskers were analyzed by X-ray diffraction and scanning electron microscopy. The obtained results showed that mullite whiskers were formed in large quantities at 1200 °C using AlF3·3H2O and V2O5 as additives; their optimal growth was observed at 4 wt% AlF3·3H2O and 1 wt% V2O5. The apparent porosity of the produced specimens was 39%; the MOR and CCS of the specimens were 31 and 152 MPa, respectively; the HMOR at 1300 °C was 11.32 MPa; and the thermal conductivity at 900 °C was 0.783 W m−1 K−1. The staggered whisker network structure formed between mullite microspheres not only improved the mechanical properties of the material, but also refined its pore size, reduced the thermal conductivity, and enhanced the thermal insulation properties.  相似文献   

7.
《Ceramics International》2022,48(21):31661-31671
The improper disposal of industrial wastes causes environmental pollution so their recycling for fabrication of new products became an interesting research issue. In this work, sintered mullite-containing ceramics were prepared from aluminum dross and silica fume (up to 40 wt%) waste materials after sintering up to 1500 °C. Before sintering, the starting waste materials were converted into nano powders by mechanical milling alloying method up to 15 h. The obtained waste nano powders were investigated using different techniques as X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM). On the other hand, phase identification by XRD, physical properties determination (bulk density and apparent porosity), microstructure by SEM, mechanical and electrical properties of sintered bodies were investigated. The results revealed that mullite phase was formed in higher amounts with increasing both sintering temperature (1500 °C) and silica fume content. At 1300 °C, amorphous mullite was formed in addition to the alumina phase. It is also noted that the apparent porosity and bulk density were reduced with increasing silica content. However, they exhibited opposite trend when the temperature increased from 1300 into 1500 °C. Moreover, with increasing the mullite content, the microhardness, compressive strength, Younges modulus and electrical conductivity were decreased and reached 10.2 GPa, 216.9 MPa, 119.7 GPa and 4.9 × 10 ?12 S/m, respectively, for the sample that contained higher amount of mullite, while the fracture toughness was improved and reached to 3.44 MPa m0.5.  相似文献   

8.
The electrical conductivity of a lab‐produced homogeneous mullite ceramic sintered at 1625°C for 10 h with low porosity was measured by impedance spectroscopy in the 0.01 Hz to 1MHz frequency range at temperatures between 300°C and 1400°C in air. The electrical conductivity of the mullite ceramic is low at 300°C (≈0.5 × 10?9 Scm?1), typical for a ceramic insulator. Up to ≈ 800°C, the conductivity only slightly increases (≈0.5 × 10?6 Scm?1 at 800°C) corresponding to a relatively low activation energy (0.68eV) of the process. Above ≈ 800°C, the temperature‐dependent increase in the electrical conductivity is higher (≈10?5 Scm?1 at 1400°C), which goes along with a higher activation energy (1.14 eV). The electrical conductivity of the mullite ceramic and its temperature‐dependence are compared with prior studies. The conductivity of polycrystalline mullite is found to lie in‐between those of the strong insulator α‐alumina and the excellent ion conductor Y‐doped zirconia. The electrical conductivity of the mullite ceramic in the low‐temperature field (< ≈800°C) is approximately one order of magnitude higher than that of the mullite single crystals. This difference is essentially attributed to electronic grain‐boundary conductivity in the polycrystalline ceramic material. The electronic grain‐boundary conductivity may be triggered by defects at grain boundaries. At high temperatures, above ≈ 800°C, and up to 1400°C gradually increasing ionic oxygen conductivity dominates.  相似文献   

9.
For lowering sintering temperature of mullite/Al2O3 composite ceramics for solar thermal transmission pipeline, kaolin, potassium feldspar, quartz, and γ‐Al2O3 were used as raw materials to in situ synthesize the composite ceramics with pressureless sintering method. Densification, mechanical properties, thermal expansion coefficient, thermal shock resistance, phase composition, and microstructure were investigated. The experiment results demonstrated that the introduction of potassium feldspar and quartz decreased the lowest sintering temperatures greatly to 1300°C. The optimum sample A3 sintered at 1340°C obtained the best performances. The water absorption, apparent porosity, bulk density, bending strength, and thermal expansion coefficient of A3 were 0.04%, 0.12%, 2.71 g/cm3, 94.82 MPa, and 5.83 × 10?6/°C, respectively. After 30 thermal shock cycles (wind cooling from 1100°C to room temperature), no cracks were observed on the surfaces of the sample, and the bending strength increased by ?7.96%. XRD analysis indicated that the main phases of samples before and after 30 thermal shock cycles were consistently mullite, corundum, and α‐cristobalite, while the content of mullite increased after thermal shock. SEM micrographs illustrated that the mullite grains growth and micro‐cracks appeared after thermal shock endowed the composite ceramics with excellent thermal shock resistance.  相似文献   

10.
《Ceramics International》2022,48(15):21515-21519
The effect of calcined andalusite aggregates on the micro-crack formation and thermal shock resistance of mullite castables was investigated and analyzed. The mullite castables were prepared from andalusite aggregates calcined at high temperatures. The results show that the micro-cracks from the transformation of andalusite to mullite can effectively relieve thermal stress, improving the thermal shock resistance of mullite castables. The micro-cracks generated decreased with increasing calcine temperatures of the andalusite aggregates. When the calcine temperature was increased from 1300 °C to 1500 °C, the thermal shock resistance of mullite castables was found to continuously increase. However, the thermal shock resistance of mullite castables with the andalusite aggregates calcined at 1600 °C is lower than those with the andalusite aggregates calcined at 1500 °C.  相似文献   

11.
In this work, an attempt to produce cordierite ceramics from granite sludge waste, talc and alumina was performed by direct coagulation casting process. To optimize the conditions for cordierite formation, three mix-compositions were firstly prepared by processing the starting materials in different conditions. The first mix was prepared by firing the mix of granite sludge, talc and alumina up to 1300 °C while the second and third mixes were fabricated by firing alumina and talc at 1300 °C or 1350 °C, respectively, then the granite sludge was added. Both batches were fired at different temperatures. According to the percentage of formed cordierite, the third mix was selected to be solidified by direct coagulation casting method followed by sintering at different temperatures. The casted cordierite was examined by thermal analysis while the sintered bodies were tested for their physical, mechanical and electrical properties. The results indicated that the pre-heating of alumina and talc at 1350 °C (third mix) enhanced the formation of cordierite and some amounts of spinel. For the casted sintered specimens, the porosity was decreased with increasing the sintering temperature. Also, there was an increase in compressive strength for the samples sintered up to 1250 °C. The dielectric constant values were varied between 4.5 and 5.89 while the dielectric loss was varied between 2 × 10?3 and 7 × 10?3, at room temperature.  相似文献   

12.
In this work, porous ZrC-SiC ceramics with high porosity and low thermal conductivity were successfully prepared using zircon (ZrSiO4) and carbon black as material precursors via a facile one-step sintering approach combining in-situ carbothermal reduction reaction (at 1600 °C for 2 h) and partial hot-pressing sintering technique (at 1900 °C for 1 h). Carbon black not only served as a reducing agent, but also performed as a pore-foaming agent for synthesizing porous ZrC-SiC ceramics. The prepared porous ZrC-SiC ceramics with homogeneous microstructure (with grain size in the 50–1000 nm range and pore size in the 0.2–4 µm range) possessed high porosity of 61.37–70.78%, relatively high compressive strength of 1.31–7.48 MPa, and low room temperature thermal conductivity of 1.48–4.90 W·m?1K?1. The fabricated porous ZrC-SiC ceramics with higher strength and lower thermal conductivity can be used as a promising light-weight thermal insulation material.  相似文献   

13.
The influence of the small addition of topaz on the processes of mineral formation in the “mullite–cordierite” system with a variable ratio of cordierite and mullite has been investigated. For this purpose, a series of experiments with different compositions of the initial mixtures, that is, with predominance of cordierite over mullite (KM mixtures) and predominance of mullite over cordierite (MK mixtures), has been performed. The addition of topaz in the form of topaz concentrate has been introduced in the amount of 1% by the weight of the investigated mixtures. The samples have been fired at various temperatures, that is, samples from KM mixtures (at a temperature of 1100–1300?°C) and samples from MK mixtures (at a temperature of 1400–1550?°C. The activating effect of topaz on mineral formation and sintering processes is determined by complex influence of fluoride products of topaz thermal decomposition. These reactively gaseous fluorides partially activate the solid-phase mass transfer processes and then reduce the viscosity of high-temperature melt formed during firing that intensifies the processes of ceramic matrix consolidation.Porous polycrystalline cordierite–mullitе–corundum ceramics from the KM mixtures, which contains 70%–87% cordierite, 3%–12% mullite, and 4%–11% corundum with water absorption of 3.5%–8% and bulk density of 2.10%–2.12?g/cm3 at the firing temperature of 1300?°C, has been developed. Mullite ceramics with notably corundum content (not more than 8%) from the MK mixtures with various density degrees at the firing temperature of 1500–1550?°C, porous ceramics with water absorption of 3%–11%, and dense ceramics with water absorption of less than 1% have been produced.  相似文献   

14.
The employment of solar energy in recent years has reached a remarkable edge. It has become even more popular as the cost of fossil fuel continues to rise. Energy storage system improves an adjustability and marketability of solar thermal and allowing it to produce electricity in demand. This study attempted to prepare cordierite/mullite composite ceramics used as solar thermal storage material from calcined bauxite, talcum, soda feldspar, potassium feldspar, quartz, and mullite. The thermal physical performances were evaluated and characterized by XRD, SEM, EPMA, and EDS. It was found that the optimum sintering temperature was 1280°C for preparing, and the corresponding water adsorption was 11.25%, apparent porosity was 23.59%, bulk density was 2.10 mg·cm?3, bending strength was 88.52 MPa. The residual bending strength of specimen sintered at 1280°C after thermal shock of 30 times decreased to be 57 MPa that was 36% lower than that before. The thermal conductivity of samples sintered at 1280°C was tested to be 2.20 W·(m·K)?1 (26°C), and after wrapped a PCM (phase change materials) of K2SO4, the thermal storage density was 933 kJ·kg?1 with the temperature difference (ΔT) ranged in 0‐800°C. The prepared cordierite/mullite composite ceramic was proved to be a promising material for solar thermal energy storage.  相似文献   

15.
《Ceramics International》2022,48(8):10472-10479
Porous mullite ceramics are widely used in heat insulation owing to their high temperature and corrosion resistant properties. Reducing the thermal conductivity by increasing porosity, while ensuring a high compressive strength, is vital for the synthesis of high-strength and lightweight porous mullite ceramics. In this study, ceramic microspheres are initially prepared from pre-treated high-alumina fly ash by spray drying, and then used to successfully prepare porous mullite ceramics with enhanced compressive strength via a simple direct stacking and sintering approach. The influence of sintering temperature and time on the microstructure and properties of porous mullite ceramics was evaluated, and the corresponding formation mechanism was elucidated. Results show that the porous mullite ceramics, calcined at 1550 °C for 3 h, possess a porosity of 47%, compressive strength of 31.4 MPa, and thermal conductivity of 0.775 W/(m?K) (at 25 °C), similar to mullite ceramics prepared from pure raw materials. The uniform pore size distribution and sintered neck between the microspheres contribute to the high compressive strength of mullite ceramics, while maintaining high porosity.  相似文献   

16.
In this work, discarded glass bottles (GB) and eggshells (ES) were used to produce foam glass designed for thermal insulation. The literature on the thermal conductivity of foam glasses produced with eggshells is sparse. This material was used as pore-forming agent at 3% and 5% weight fractions to obtain a foam glass with low thermal conductivity. Homogenized powders were uniaxially pressed, and the compacts were fired at three temperatures (800, 850, and 900°C). Raw materials were characterized by chemical analysis and particle size distribution. The foam glasses were characterized by their porosity, phases, compressive strength, and thermal conductivity. The best insulating properties were obtained for the composition containing 5 wt% ES fired at 800°C. This sample displayed a porosity of 91.4% while its thermal conductivity was of 0.037 W/m.K, with a compressive strength of 1.12 ± 0.38 MPa. Crystalline phases were observed in samples fired at 850 and 900°C as a result of the devitrification process. The final properties of the materials are comparable to those of commercial foam glasses obtained from non-renewable, more expensive raw materials, a great indicator that the studied compositions could be used as an environmentally friendly substitute.  相似文献   

17.
《Ceramics International》2019,45(15):18865-18870
Near-net-shape mullite ceramics with high porosity were prepared from ultra-low cost natural aluminosilicate mineral kaolin as raw material and polystyrene micro-sphere (PS) as pore-forming agent. Microstructure, flexural strength, thermal conductivity and dielectric properties of the ceramics were systematically researched. Results show that the porous mullite ceramics possess fibrous skeleton structure formed by a large quantity of interlocked mullite whiskers, which results in good mechanical properties and low-to-zero sintering shrinkage. Flexural strength of the porous mullite ceramics can be up to 41.01 ± 1.12 MPa, even if the porosity is as high as 62.44%. The dielectric constant and loss tangent of the porous mullite ceramics at room temperature are lower than 2.61 and 5.9 × 10−3, respectively. Besides, dielectric constant is very stable with the rising of temperature, and the dielectric loss can be consistently lower than 10−2 when the temperature is not higher than 800 °C. In addition, thermal conductivity at room temperature is as low as 0.163 W/m/K when the porosity of mullite ceramics is 80.05%. The infiltration of SiO2 aerogels (SiO2 AGs) can further decrease the thermal conductivity to 0.075 W/m/K, while has just little effects on the dielectric properties. Excellent mechanical, thermal and dielectric properties show that the porous mullite ceramics have potential applications in radome fields. The porous mullite ceramics prepared from kaolin not only have low cost, but also can achieve near-net-shape.  相似文献   

18.
Three porous ceramic composites were prepared from readily available raw materials (kaolin, bauxite, feldspar and kyanite). The porous ceramic formulations were sintered at different temperatures ranging from 1200 to 1400°C. The fired specimens were characterized by determining their porosity, bulk density, flexural strength, thermochemical stability, microstructure, water and mercury permeability. Apparent porosity and bulk density in the range 15.57 ± 1.56–42.73 ± 2.28?vol% and 2.23 ± 0.31–2.68 ± 0.41?g?cm?3 respectively were obtained after firing. The flexural strength was in the range of 32.31 ± 2.1–74.88 ± 2.57?MPa and the thermal expansion coefficient of 5–9 × 10?6 C?1. The values of water permeability were 745.4, 641.45 and 525.91?L/m2 h?kPa respectively for PK3, PK4 and PK5. It was found that at high temperature (1400?°C), kyanite particles enhanced the porosity and thermal stability by reducing glass formation and improving crystallization. The presence of the interconnected pores with size between 0.03 and 4.50?µm, the high total volume of pores together with the high flexural strength and thermal stability make the synthesized porous ceramics suitable for high-pressure filtering applications.  相似文献   

19.
Iron tailings remain the environment-damaging waste from the iron ore, and high porosity porous ceramics are an attractive material to “turn waste into treasure.” To improve the thermal conductivity, porous ceramics with high silicon carbide content have been prepared by carbothermal reduction sintering process using argillaceous fine-grained iron tailings with high silica content. The carbothermal reduction reaction mechanism and the components and properties of samples in sintering process are investigated. The results show that reaction components in the tailings are mainly SiO2 and Fe2O3 and liquid phase is generated rapidly between 1200°C and 1300°C, producing foaming effect and significantly improving the porosity. Moreover carbothermal reduction of SiO2 occurs above 1300°C. After sintering at 1600°C for 2 hours, the apparent porosity and thermal conductivity of porous iron tailing ceramics are 81.1% and 0.58 W/(m·K), respectively. Compared with the ordinary porous iron tailing ceramics with the same porosity, the thermal conductivity of those herein is increased by 6.6 times. This study is instructive for the development of low-cost preparation technology of phase change material carriers.  相似文献   

20.
《Ceramics International》2021,47(21):29576-29583
Mullite fiberboards have been extensively used in heat-insulating refractory materials. To further improve the thermal insulation properties and reduce the density, we fabricated mullite fiberboards by vacuum filtration using hollow mullite fibers based on a ceiba fiber template. The effects of sintering temperature and type and content of high-temperature adhesives on the density, compressive strength, thermal conductivity, microstructure, and volume stability of mullite fiberboards were investigated. The results showed that the obtained mullite fiberboards have ultralow density of 0.1–0.2 g/cm3, low thermal conductivity of 0.0988–0.1230 W/(m·K) (at 500 °C), and compressive strength of 0.08–0.12 MPa, and they exhibit good volume stability at 1300 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号