首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
中国石油四川石化有限责任公司1.1 Mt/a催化裂化汽油加氢装置采用中国石油石油化工研究院与中国石油大学(北京)合作研发的GARDES汽油加氢技术,以催化裂化汽油为原料,生产硫含量满足GB 17930-2016的车用汽油(V)(简称国V汽油)调合组分。标定结果表明,以硫质量分数69.6 μg/g,烯烃体积分数30.3%,芳烃体积分数18.4%的催化裂化汽油为原料,经GARDES技术处理后,混合汽油产品的硫质量分数为7.1 μg/g,辛烷值(RON)为91.7,比全馏分汽油原料的辛烷值(RON)损失0.5个单位,混合汽油收率99.41 %,优于控制指标,装置综合能耗略高于控制指标。  相似文献   

2.
针对现有轻汽油醚化装置采用催化稳定汽油为原料,其轻重汽油切割塔进料中重汽油组分多、分离能耗高、有效能损失大等问题,提出了2个新的醚化原料供应流程--催化稳定塔侧线供料流程和催化稳定塔侧线轻汽油汽提流程。与原流程塔底稳定汽油轻的馏分直接送切割塔相比,前者从稳定塔提馏段采出由于减少了重组分随带,切割塔的处理量和能耗双双降低;后者从稳定塔精馏段采出轻汽油,经汽提脱除≤C4组分后直接送醚化单元,无需切割塔,使投资和能耗大大降低。与12 Mt/a催化裂化装置相配套的某02 Mt/a轻汽油醚化装置实例研究表明,新流程是可行的,相比现有流程,其总有效能损失分别下降1597%和2145%。  相似文献   

3.
南京炼油厂研究催化裂化汽油醚化法生产高辛烷值组分的方法主要采用两种路线:一种是催化裂化汽油全馏分加5-8m%的甲醇进行催化醚化.该流程的最大优点是工艺流程简单、适应能力强,很容易调节不同比例的甲醇量,但催化剂使用寿命短;另一种是开发了汽油轻馏分醚化生产甲醇汽油的工艺流程.  相似文献   

4.
辽河石化分公司应用两段提升管催化裂化技术对催化裂化装置进行了改造,并增设了两种催化裂化汽油(轻馏分汽油和全馏分汽油)回炼改质措施。工业应用表明,在汽油烯烃含量接近目标值(目标值为体积分数39%)时,汽油回炼量小,此时回炼轻馏分汽油有利于目的产品收率的提高;当汽油烯烃含量与目标值相差较大时,汽油回炼量大,此时回炼全馏分汽油有利于汽油辛烷值不受损失。  相似文献   

5.
采用流程模拟技术,从装置负荷率、产品含硫量指标、装置能耗构成、主要用能点等方面,对催化裂化(FCC)汽油加氢脱硫装置的关键能耗因素进行定量分析,针对中国石油克拉玛依石化有限责任公司(简称克石化公司) 50万t/a FCC汽油加氢脱硫装置提出优化方案。结果表明:影响FCC汽油加氢脱硫装置能耗的主要因素为装置负荷率和产品含硫量指标,装置综合能耗主要由燃料、电、蒸汽、循环水和除盐水等构成,燃料占50%~60%;针对克石化公司装置,采用增加预加氢反应产物与装置进料换热流程的方案A,控制预加氢反应产物进分馏塔温度稳定,优化后重汽油加氢反应产物出口温度从92.0℃升至121.5℃;在方案A基础上,采用增设重汽油加氢反应产物热分离罐的方案B,能够增加精制重汽油低温热输出,按照重汽油加氢反应产物进热分离罐温度5.9℃,低温热水来水温度75℃、换热温差10℃计算,优化后装置可输出低温热169.6×10~4 kcal/h,可节约低压蒸汽2.8 t/h;在方案A和方案B基础上,采用装置进料为热进料的方案C,能够避免有效能损失,增加低温热输出,按照混合原料温度60℃计算,优化后稳定汽油输出低温热由169.6×10~4 kcal/h增加至210.9×10~4 kcal/h,折合1.0 MPa蒸汽3.5 t/h,可降低装置能耗1.4 kg/t。  相似文献   

6.
不同方式的催化裂化汽油降烯烃过程的反应规律研究   总被引:6,自引:2,他引:4  
利用催化裂化催化剂在小型提升管催化裂化试验装置上考察了催化裂化汽油轻馏分改质和催化裂化汽油循环回炼改质的反应规律。试验结果表明,催化裂化汽油轻馏分改质的反应进行的程度同全馏分改质不同,催化裂化汽油轻馏分改质过程的液体收率和汽油收率与相同条件下全馏分汽油改质过程相近,尽管低碳数烯烃的初始浓度远远高于高碳数烯烃的初始反应浓度,但其转化率要比高碳数烯烃低。催化裂化汽油循环回炼次数增多,改质汽油收率增加,液化石油气收率减少,而液体收率基本不变。  相似文献   

7.
为进一步提高汽油辛烷值并降低氢耗,中国石化上海石油化工股份有限公司在3.50 Mt/a催化裂化装置和3.90 Mt/a渣油加氢装置上实施了第二代催化裂化柴油(LCO)加氢-催化裂化组合多产高辛烷值汽油和芳烃料(LTAG Ⅱ)技术。标定结果表明:采用减压蒸馏塔对LCO进行轻、重馏分切割,重馏分加氢后与轻馏分一起去催化裂化回炼,最终催化裂化反应的表观转化率为74.12%,(汽油+液化气)表观选择性之和约为88.00%;与不采用LTAG技术时相比,催化裂化装置LCO产率降低5.50百分点,液化气与汽油产率分别提高1.47百分点和3.37百分点;与采用LCO全馏分加氢回炼的第一代LTAG技术时相比,催化裂化所得稳定汽油的RON、MON分别提高0.6、0.7,且LCO加氢的氢耗(w)降低22.70%,经济效益显著。  相似文献   

8.
介绍了Lurgi 甲醇制丙烯(MTP)工艺的技术特点及在神华宁夏煤业集团工业应用的情况。通过技术改造和优化,解决了激冷水泵汽蚀、工艺蒸汽中钠离子和丙烯中水含量超标等问题,提升了工艺蒸汽塔产能,实现了MTP装置满负荷运行,但仍然存在MTP反应器结构复杂、物料分布不均、工艺蒸汽塔蒸汽产能不足等问题。工业运行结果表明:丙烯收率比设计值偏低1.5~9.8百分点,而副产的液化气和燃料气收率偏高;副产的汽油馏分呈现正构烷烃含量低、芳烃含量高的特点,与常规FCC汽油组成差异较大;MTP催化剂使用寿命小于8 000 h,平均单程寿命仅为640 h ~700 h,需要反复再生。  相似文献   

9.
应用Aspen HYSYS软件对中国石化洛阳分公司700 kt/a连续催化重整(简称重整)装置进行流程模拟,得到了与装置实际操作接近的理想模型。通过模型对重整预加氢分馏塔C101操作参数、重整生成油换热流程进行优化,并模拟反应温度对重整汽油辛烷值桶、芳烃收率、纯氢收率等产品指标及积碳速率的影响。结果表明:优化后重整进料中C5组分的质量分数由优化前的3.06%降至2.40%,C101塔底再沸炉瓦斯耗量减少94 m3/h;优化重整生成油换热流程后,重整脱戊烷油热供芳烃温度由70℃提高至95℃,下游芳烃装置3.5MPa蒸汽耗量降低2t/h,重整生成油脱戊烷塔塔底再沸炉瓦斯耗量减少20 m3/h,C101塔顶两台空气冷却器停运,节电248kW.h;结合装置烧焦能力,确定了重整装置适宜的反应温度为520℃。通过上述优化措施,连续重整装置效益可增加 1 358万元/a。  相似文献   

10.
山西晋城无烟煤矿公司与伍德公司于2006年12月签署了建设甲醇制汽油(MTG)装置的工程和技术供应合同。该装置是晋城公司建设的中型规模联合装置的一部分,包括流化床、硬煤气化装置和甲醇装置。计划生产100kt/a汽油,2008年投产。  相似文献   

11.
对比了微米HZSM-5和纳米HZSM-5分子筛催化甲醇制汽油(MTG)反应的性能,发现采用纳米HZSM-5分子筛催化剂能得到较高的汽油收率和较长的使用寿命。对纳米HZSM-5分子筛在不同温度下进行水热处理,利用低温N2吸附-脱附、XRD、NH3-TPD手段对水热处理前后的分子筛样品进行表征。在380℃、1.0 MPa、空速3.0 h-1的反应条件下进行MTG反应,对水热处理后的催化剂进行评价。结果表明,对纳米HZSM-5水热处理能显著提高其催化MTG反应的汽油收率和延长催化剂使用寿命。纳米HZSM-5分子筛的最佳水热处理温度为600℃,在此条件下处理后用于MTG反应,催化剂的使用寿命由水热处理前的84 h显著增加到216 h,积炭量却由35.8%降至23.7%。另外,随着纳米HZSM-5催化剂水热处理温度的升高,其催化MTG所得汽油产品中的异构烷烃和烯烃含量增加,芳烃含量降低。  相似文献   

12.
分析了中国石油天然气股份有限公司克拉玛依石化分公司两套制氢装置的能耗构成特点及影响能耗的主要因素,明确了降低燃料气、蒸汽和电的消耗是降低装置能耗的主攻方向。通过采取一系列的节能措施,如原料气升压,停用部分设备,降低了电和循环水的消耗;对转化炉的空气预热器热管进行了更换和扩容以及内衬里修复,喷涂耐高温反辐射节能涂料,提高了转化炉的热效率,大幅减少了燃料气的消耗;实施了对氢压机调速器的改造,以解决Ⅰ套制氢氢压机加工负荷不一致的难题,降低了电和蒸汽的消耗;还利用当地冬季运行的特点,优化了蒸汽运行流程,提高了蒸汽的利用率。这些节能举措实施后,显著地降低了两套装置的能耗,全年可增加经济效益1 447.6×104 RMB$。  相似文献   

13.
针对某公司催化裂化联合装置(包括140万t/a催化裂化、30万t/a气体分馏、8万t/a甲基叔丁基醚、产品精制等4套装置)存在能耗较大的问题,分析了联合装置能耗情况,并提出节能优化改进措施。结果表明:联合装置能耗主要包括循环水、电、低压蒸汽、中压蒸汽和除盐水;采取装置联合热直供优化(催化柴油直供柴油加氢装置、催化汽油直供汽油加氢装置)、换热流程优化(分馏塔塔顶油气热量利用、分馏塔塔顶循环油热量利用、分馏塔一中段油热量利用)的节能改进措施,该联合装置可节约蒸汽21.5 t/h、循环水126.0 t/h、电214.7 kW·h,经济效益可达2 718.78万元/a,投资回报期为0.6个月。  相似文献   

14.
刘景睿 《石化技术》2013,(4):48-50,54
通过分析气相法聚乙烯装置的生产运行数据,发现电、循环水、氮气和蒸汽的消耗量是影响气相法聚乙烯装置能耗的主要因素,其中电耗所占比例最大。并提出了降低气相法聚乙烯装置综合能耗的对策,主要是对电、循环水、蒸汽、氮气等能源进行严格控制和节约使用,同时应用先进过程控制系统进一步降低装置能耗。  相似文献   

15.
近年来"多点注汽"技术逐渐得到广泛应用,中国石油化工股份有限公司洛阳分公司主要研究了提高炉管注汽量对延迟焦化工业生产装置的影响。工业试验结果表明:当注汽量由0.81%分别提高到1.48%,1.98%,3.09%和3.96%时,汽油和柴油的产率略有降低,焦化蜡油的产率增加,焦炭产率明显降低,按照生焦系数换算的焦炭产率分别降低了0.82,1.24,2.13和3.05百分点。产品中汽油馏分和柴油馏分的性质变化不大,而焦化蜡油的性质变差。注汽量的提高会增加装置的加工能耗,当炉管注汽量提高到约3.93%时,加工能耗增加约155.04 MJ/t。  相似文献   

16.
介绍了中石油云南石化有限公司轻汽油醚化装置的节能优化操作。优化后醇烯比从1.4降到1.35,分馏塔压力从0.25 MPa降到0.24 MPa,塔底操作温度从119℃降到117℃,塔底再沸器低压蒸汽耗量从8.12 t/h降到5.72 t/h;甲醇回收塔塔压从0.17 MPa降到0.08 MPa,回流量从18.5 t/h降到9.0 t/h,蒸汽消耗量从12.3 t/h降到5.2 t/h;加工每吨原料消耗蒸汽从0.31 t降到0.17 t,装置能耗从1015.9 MJ/t降到621.0 MJ/t,实现了节能降耗的目的。  相似文献   

17.
为解决FCC柴油后路问题,中国石油化工股份有限公司茂名分公司对1号加氢裂化装置进行了改造,加工FCC柴油生产高辛烷值汽油。标定结果表明,通过更换催化剂,采用部分循环的操作方式,在一定的氢分压、精制反应平均温度为394℃、裂化反应平均温度为400℃的条件下,可生产辛烷值88的汽油馏分,反应的转化率为40.4%,汽油的收率为26.53%,装置能耗为1 582.97 MJ/t;将精制反应温度降到392℃,裂化反应温度提高到401℃时,汽油馏分的辛烷值可提高到91,反应转化率为39.1%,汽油收率24.42%,装置能耗为1 590.07 MJ/t。同时,对装置运行存在的问题进行了分析,需要通过调整反应系统压力以及循环氢纯度来优化装置的运行。  相似文献   

18.
 针对催化粗汽油回炼改质过程能耗偏高的现状,进行了以降低辅助提升管油/剂接触温差和优化辅助分馏塔油气热量利用为内容的过程用能改进。工程实施结果表明,利用装置低温余热提高粗汽油回炼温度,可通过多发生5.7t/h的中压蒸汽,将辅助分馏系统的较低品质热量置换出等量的反-再系统的高品质热量;同时,辅助分馏塔中段回流热和循环油浆热量的升级利用,使得催化粗汽油回炼改质工艺的用能状况大为改善。优化改进后的有效热利用提高,干气和焦炭的产率下降,使现有的50t/h粗汽油回炼改质催化装置能耗降低4.4 (kg 标油)/ (t原料),且汽油质量得到提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号