首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
准确的井底钻压是提高钻井效率的重要因素。近年来,越来越多研究表明,智能技术是准确预测目标值的有效途径,结合反向传播(Back Propagation, BP)神经网络和长短期记忆神经网络(Long Short-Term Memory, LSTM),并将单一的BP与LSTM模型和遗传算法(Genetic Algorithm,GA)相结合,建立了4种井底钻压智能预测模型(BP、LSTM、GA-BP与GA-LSTM模型)。通过实验论证,遗传算法在一定程度上起到了优化作用,表现出更高的预测精度、更好的鲁棒性与预测趋势、更快的预测时间。GA-LSTM与GA-BP比单一LSTM与BP模型的平均相对误差分别降低了40.13%和47.11%,并且预测时间分别缩短了12.6倍和9.3倍。其中综合考虑各方面性能可选取GA-LSTM作为井底钻压最优智能预测模型,应用于钻压实时监控或与常规的自动送钻系统结合从而实现对井底钻压的准确控制,提高钻井效率与钻头性能,降低钻井成本。  相似文献   

2.
井底环空压力与地层压力的平衡关系是影响钻井作业安全的重要因素。由于井下工况复杂多变,而目前通过水力模型理论计算所得的井底压力与实际压力值存在较大的误差。文中介绍了一种可以测量近钻头处钻压、扭矩、环空压力、环空温度及钻柱内压力等参数并将测量数据实时传输至地面的随钻压力测量系统(PWD)。依靠PWD的实时测量数据,可以实时修正井筒水力模型,解释井底工况,预测钻井事故。现场试验证明,该测量系统测量参数准确、工作稳定可靠。通过与存储式PWD测量数值对比,该测量系统有较高的测量精度,具有实时传输测量数据功能,可为钻井作业提供有力的技术支持。  相似文献   

3.
采用传统的压裂监测技术测得的井口压力和温度很难反映井底的真实情况。鉴于此,研究了井下压裂实时监测技术,并配套研制了实时监测系统和压裂实时解释处理软件。实时监测系统将承载着监测仪的监测管柱下入目的层,在井底直接测得压力和温度数据,避免了通过井口数据折算至井底时由于井筒摩阻系数、井筒液体密度变化和泵压不稳定等因素产生的误差,因此分析的准确性大大提高;解释处理软件可对测量数据进行解释评价,以此来反映目的层真实信息及压裂效果。井下压裂监测技术在中原油田得到了广泛应用,分别在濮城老区和内蒙探区监测施工50余井次,测试成功率100%。  相似文献   

4.
为了能够快速有效地监测井下复杂情况并控制井底压力,开发了一种基于微流量测量的控制系统,根据实时监测钻井液进出口流量的变化来判断井下复杂情况,通过调节井口节流装置的开度来控制井口回压,从而实现对井底压力的精确调节和控制。设计了一套井下压差式环空微流量测量装置,该装置能够快速监测由于早期井涌、井漏等井下复杂情况而引起的井底流量的微小变化,并将井下测得的数据通过MWD传送至地面,与井口数据相结合进行分析,从而能够更加有效地提高微流量控制系统对井底复杂情况的判断能力和系统控制精度。介绍了井下微流量控制流程,进行了压差式井下环空流量测量装置的入井试验,分析了试验结果。入井试验表明,该装置可成功监测环空井底微流量变化,及时反映井底工况,且测量精度较高。   相似文献   

5.
控压钻井系统主要由钻井参数监测系统(包括井下PWD)、决策分析系统、电控系统、地面自动节流控制及回压补偿系统组成,通过在井口施加连续回压来实现井底压力的恒定控制,能有效解决窄密度窗口地层和高温高压地层所出现的钻井复杂问题。白28井的应用结果表明,使用控压钻井技术,在控压钻进工况下可将井口压力波动控制在0.2 MPa以内,控压停泵和起下钻工况下可将井口压力波动控制在0.5~0.8 MPa,井底压力波动控制在1.0~1.5 MPa,可保证井底压力当量密度在控制范围内;能够快速发现溢流和井漏等复杂情况并进行有效控制,确保了施工过程的安全,实现了钻井安全和勘探开发的目标。  相似文献   

6.
海上油气井压力测试过程中,潮汐效应产生的干扰压力会造成井底压力出现周期性波动,影响流态识别和储层物性参数解释的准确性.利用Tidal Modal Driver工具箱,实时预测海平面高度,基于压力恢复过程中的双对数函数,建立非线性最优化模型,采用Levenberg-Marquardt算法求解潮汐影响系数和相位差,消除井底...  相似文献   

7.
控压钻井分级智能控制系统设计与室内试验   总被引:4,自引:2,他引:2  
自动控制系统是控压钻井的核心技术,是控压钻井作业成功的关键。在控压钻井自动控制系统中引入了分级递阶智能控制的概念,将控制系统分为反馈控制、预测和监测控制和多目标优化控制3个层次,建立了分级智能控制的概念设计,并论证了多级控制策略的可靠性和工作特点;同时在参数预测与监测控制中引入了模型预测控制算法(MPC),结合实时数据测量、流动模型和控制回路的系统分析,提出了一种持续对井眼流动模型和钻井力学模型进行数据更新的方法,并给出了控压钻井井底压力实时模型预测控制的方法和流程。   相似文献   

8.
气水两相煤层气井井底流压预测方法   总被引:9,自引:0,他引:9  
基于井筒流体稳定流动能量方程,建立了煤层气柱段压差和两相液柱压差的数学模型,给出了气水两相煤层气井底流压的预测方法,并分析了各排采参数间的相互关系及其对产能的影响。研究结果表明,该算法较为准确地预测了煤层气井进入稳定排采后的井底流压;井底流压是井口套压、气柱和液柱压力综合作用的结果,能充分反映产气量的渗流压力特征;该模型充分考虑了井筒中压力增量随井深增量的变化关系,在两相液柱段每等份长度不超过25 m时,井底流压预测结果的相对误差可控制在5%以内;调整井底压力,可有效增大生产压差,控制排液量,利于煤层气体的解吸,从而提高产气量;产水量较大,动液面较高时,宜加大排液量,降低井底压力,而动液面较低时,宜放开套压。  相似文献   

9.
在欠平衡钻井过程中,为避免井底压力波动过大,引起过平衡状态,对产层造成伤害,保持全过程欠平衡钻井十分必要。分析了影响井底压力波动的因素,介绍了国内外在井底压力控制技术方面的最新研究成果,总结了欠平衡钻井井底压力预测技术研究现状。通过分析该研究领域内存在的不足及应用上的局限性,提出了解决井底压力波动的最新压力预测及控制技术的研究方向,即建立井筒和地层耦合的动态欠平衡钻井模型,实时监测和控制井底压力,在起下钻及接单根过程中,用地层流体的适当流入来代替中断的地面注入过程,避免井底压力波动过大而引起过平衡的钻井状态,保持全过程欠平衡钻井,最大限度地保护产层。另外,为了保证欠平衡钻井井底压力预测的有效性,提出了井底压力预测应采用稳态模型和动态模型结合的新方法。  相似文献   

10.
用神经网络建立自喷井井底流压预测模型   总被引:1,自引:0,他引:1  
了解油井生产时的井底流压大小是现场生产测试和分析中的一项重要工作。自喷井的井底流压值与产油量,含水,气油比,流体性质等参数呈复杂的非线性关系。神经网络具有表达任意非线性映射的能力,可以将其应用于建立自喷井井底流压预测模型。用一定数量的实测井底流压及相应的有关参数、根据BP神经网络实习算法对网络进行训练。  相似文献   

11.
高温高压条件下钻井液当量静态密度预测模型   总被引:4,自引:2,他引:2  
高温高压井中,钻井液密度受温度和压力的影响较大,如果按照钻井液地面物性参数来计算井底静压则会产生较大误差,在孔隙压力与破裂压力差值很小的井中,可能会产生井涌、井喷或井漏等井下复杂情况或事故.从井筒温度场的数值模拟入手,首先建立了钻井液循环期间井筒的温度分布模型,然后通过高温高压钻井液密度试验,分析了钻井液的高温高压密度特性,并在试验的基础上建立了高温高压钻井液密度预测模型,在此基础上,用迭代数值计算方法建立了钻井液循环期间当量静态密度预测模型.该模型将循环期间的井筒温度场模型与高温高压钻井液密度预测模型结合起来,计算出的钻井液当量静态密度较为准确.该模型为控压钻井技术提供了理论依据,对于合理控制井下压力、预防井下复杂情况和事故的发生具有指导意义.  相似文献   

12.
随钻环空压力测量系统能够提供实时的井底压力数据,提高井底压力控制精度,防止井下复杂情况的发生,提高钻井时效。鉴于此,介绍了随钻环空压力测量系统的基本原理、系统硬件组成、压力传感器选型及标定结果,阐述了采用双向可控供电方式的信号测量与数据采集电路。现场试验情况表明:随钻环空压力测量系统的测量精度较高,钻进过程中测量数据实时传输可靠稳定。该系统可为控压钻井、欠平衡井、高温高压井和大位移井等钻井作业提供技术支持。  相似文献   

13.
环空气侵是钻井过程诱发溢流直接原因,也是发生井喷的重要先兆。基于一维不稳定流基本理论,从压力波传播角度出发,建立了井底压力动态预测模型,并设计了模型数值解法。算例分析结果表明,模型能够很好地预测井底压力动态特性,能够为溢流控制和井喷压井等井底压力控制措施提供技术支撑。  相似文献   

14.
苏建政 《钻采工艺》2008,31(5):90-92
通过分析压裂气井稳定产能与其影响因素之间的相关性,应用目前流行的BP人工神经网络方法,建立了压后气井稳态产能预测模型,并且在Matlab软件平台上对网络模型实现。根据现场收集的近30口气井的压裂施工数据和压后产能数据,对网络进行训练,并将训练好的网络用于同区块的压裂井稳定产能预测分析。结果表明,与常规方法相比,该方法不需要复杂数值模拟计算,预测精度可以指导现场生产,为气田在区块开发过程中压裂气井稳定产能评价提供了一种分析方法。  相似文献   

15.
石油勘探开发不断面向着更为复杂多变的地层,为应对深层复杂油气藏钻探过程中存在的气侵现象,需要采用控压钻井技术(MPD)以防止气侵导致的井喷事故。其中,通过求解气侵工况下两相流井筒水力学偏微分方程组(PDEs)来准确预测井底压力是制定控制方案的关键。采用基于自适应物理信息神经网络(PINN)方法对两相流井筒环空压力进行预测:首先,根据井筒机理设计全连接神经网络,用于拟合训练数据样本的分布;其次,将已知的两相流井筒模型的偏微分方程以微分形式约束条件融入神经网络的损失函数中,此外,采用可训练的自适应权重提升神经网络模型精度,使网络在训练过程中着重关注边界点、初始点等求解困难区域;最后采用Adam算法对网络参数和微分方程的权重进行优化,并使用L-BFGS算法对网络参数进一步优化。随机选取有限差分法在稠密网格情况下求解井筒水力学模型所得的部分数据作为实验数据集。实验结果表明,相较于常规的物理信息神经网络和传统的有限差分法,用于两相流环空压力预测的自适应物理信息神经网络模型性能更佳。  相似文献   

16.
欠平衡钻进过程中,气体侵入井筒后,环空出现多相流动状态。由于气体具有可压缩性,环空压力场随着气体的侵入及侵入量的改变而呈现复杂的变化.整个井筒压力剖面将出现波动。、为使地层气体可控制地侵入井筒.需要及时调节控制回压和钻井液排量,保证井底压力在安全密度窗口内,维持合理的井底欠平衡状态,以实现安全钻进。、文中根据欠平衡钻进井筒压力平衡关系,建立了井底压力控制模型。通过分析影响井底压力的参数.建立了影响井底压力控制的安全钻进控制参数模型.并以控制回压为例给出了具体的求解流程。以新疆某井为例.说明控制参数对井底压力和环空压力场的影响、研究结果表明:地层出气后,能够通过增加控制回压,采用正常循环排出的方式,将侵入气体排出井筒,实现安全钻进;增加钻井液排量,气液混合速度增大,环空摩阻增大.导致井底压力增加。  相似文献   

17.
介绍了一种气井生产期间不进行井下测压即可确定井底流动压力和地层压力的新方法。通过对大量的气井回压试井测试资料的统计分析发现,每口气井一旦确定了生产管柱,井口压力即与井底流动压力存在某种特定的关系。通过这种关系,建立每口井生产期间井底流动压力与垂直管压力损失之间的函数关系,即可根据井口压力实时获取井底流动压力,并根据产能公式计算地层压力。该方法无需测压即可确定井底流压和地层压力,操作非常简单,无需额外的测压成本并可随时掌握井底流动压力,及时提供给气藏管理部门确保气藏合理开发,以获取最大的经济效益。  相似文献   

18.
深水动态压井钻井井筒压力模拟   总被引:4,自引:0,他引:4  
动态压井钻井技术可有效解决深水表层钻井过程中出现的溢流或井漏、井塌等井下复杂事故。为研究深水表层动态压井钻井过程中的压力变化特征,结合动态压井钻井基本原理,建立了动态压井钻井井筒物理模型,通过设定海水和加重钻井液的初始排量、排量随时间的变化率,推导出了变排量、变密度模式下的动态压井钻井井筒压力数学模型。根据墨西哥湾深水钻井实例数据,计算分析了动态压井钻井过程中环空密度、环空压力、环空压耗以及井底压力随时间的变化关系。结果表明,动态压井钻井技术的关键在于通过实时调整海水排量、加重钻井液排量控制混浆密度,进而控制环空液柱压力,达到深水表层安全钻井的目的;机械钻速是影响井底压力的重要因素,机械钻速越大,由岩屑产生的附加密度越大,井底压力越大。  相似文献   

19.
稠油蒸汽驱生产井闪蒸预测模型   总被引:1,自引:0,他引:1  
稠油蒸汽驱生产井闪蒸会造成抽油泵气锁、油管及抽油泵损坏、产液量下降等问题。闪蒸预测的难点在于井底温度和压力计算的准确与否。根据传热学和计算流体力学建立了井筒温度分布模型、压力分布模型、液体流经抽油泵固定阀时的局部压降损失计算模型,结合修正的油水混合物饱和蒸汽临界温度-压力曲线,建立了稠油蒸汽驱生产井闪蒸预测模型。可以依据井口产液量、含水率、温度等生产参数及井身结构参数对井底及泵内闪蒸情况做到实时监测。现场应用证明闪蒸预测模型能对井底流体状态进行准确预测。  相似文献   

20.
海上特别是深水钻井作业井筒温度压力准确预测是保证钻井作业安全以及钻井/钻井液设计与评估的重要参数。由于海水和地层双重影响井筒温度变化较大,而钻井液物性(密度、流变性等)受井筒流动传热的影响较大,同样钻井液物性的改变反过来也会影响井筒温度压力的准确预测,如果钻井液参数视为常数,按照地面条件下钻井液物性预测井底压力和温度则其精度难以保证,在钻井液密度敞口非常小的地层,可能会产生井漏、溢流等井下复杂或事故。本文分别对深井水基钻井液的密度、黏度等物性参数预测模型进行了优选,建立了深井钻井井筒流动传热模型预测井筒压力温度,并分析了工艺参数对井底压力温度的影响。本研究为准确井底压力温度、预防钻井复杂事故,保障海上深水安全高效钻井具有较高的指导价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号