首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
四川盆地边缘山地强降水与海拔的关系   总被引:1,自引:0,他引:1  
周秋雪  康岚  蒋兴文  刘莹 《气象》2019,45(6):811-819
利用四川盆地1666个站点2011—2015年4—10月的逐小时降水资料及高精度格点海拔高度资料,对降水特征与海拔高度的变化关系进行详细分析,研究发现:(1)汛期总降水量、总雨日、小雨日、中雨日随海拔高度升高而增加,但降水量与雨日随海拔的增长方式并不相同,降水量显著增长区主要集中在200~1200 m,当海拔超过1200 m时降水量迅速减少;大雨日及暴雨日在海拔超过1200 m后也迅速减少。(2)盆地西北部、西南部沿山一带的暴雨日主要由强小时雨强贡献,而盆地东北部的暴雨日主要受持续性降水影响。(3)四川盆地复杂地形对降水的日变化有较为显著的影响,小时雨量及短时强降水频次峰值出现时间均随着海拔高度升高而提前,而短时强降水首次出现时间则随海拔高度升高而推迟。  相似文献   

2.
利用2015—2018年5—9月白龙江流域甘肃段140个气象站小时降水资料,定义流域降水过程次数等特征量,分析该流域汛期降水变化特征。结果表明:(1)白龙江流域甘肃段汛期平均降水量逐年增加,近4 a汛期平均降水量分布与逐年分布在空间上相似,均为下游的广坪河支流最多,短时强降水主要集中在白龙江主河道上。(2)流域内平均降雨日数与平均降水量的空间分布不对应,降雨日数多的年份各支流降雨日数分布较均匀,降雨日数少的年份则各支流间差异较大。(3)流域内各支流的平均降水量、降雨日数与短时强降水在空间分布上并不一致。(4)流域内白天出现降水的次数小于夜间,01时出现最多;各支流降水出现次数夜间多于白天,以22—23时、03—04时这两个时段最多;流域内短时强降水天气在21时出现最多。(5)流域内的最大降水过程的累计雨量、持续时间及小时最大降水量随着季节变化明显。5、6月累计雨量不大,持续时间较长,小时降水量较小;7、8月累计雨量大,持续时间较短,小时降水量较大;9月累计雨量较大,持续时间长,小时降水量小。  相似文献   

3.
利用内蒙古119个国家气象站逐小时降水量及常规的日降水量资料对2012—2015年内蒙古出现的短时强降水及大雨以上天气情况从时空分布、出现概率、降水比率等多方面进行了比较全面的统计。分析了内蒙古短时强降水的时空分布特征,特别是得出了内蒙古短时强降水发生时段,以及短时强降水在整个大到暴雨过程中所占比例等方面的特点,为预报员认识内蒙古短时强降水活动情况提供有利的参考。分析得出:短时强降水在时间、空间以及降水量级上的分布极不均匀,主要发生在6—8月,7月最多;短时强降水主要出现在午后到傍晚时段,集中在15—17时,尤其17时最多;短时强降水多出现在日降水在6h之内(含6h),占短时强降水发生总数的57%;短时强降水的降水比率相当高,有84%的短时强降水过程中短时强降水雨量占当日降水总量的50%以上,39%的占当日降水总量的80%以上;短时强降水受地形增幅影响极大,内蒙古东部偏东的大兴安岭东侧和西中部阴山山脉南侧均为短时强降水多发区。  相似文献   

4.
利用1991~2011年5~9月伊宁市气象站逐小时降水资料,分析了伊宁近21a降雨特征。结果表明,21a来伊宁雨日年际变化较为明显,后10a和前10a相比,中雨、大雨和暴雨日数均出现增加,但小雨日数明显减少导致总雨日出现了减少。小雨过程发生最多的时段是7月中旬,中雨和大雨过程最多时段同在5月下旬。前半夜为中雨、大雨、暴雨过程最易发生时段,后半夜为小雨过程最易发生时段。逐小时降水量和降水频次呈现较为一致的日变化特征,夜雨多且雨量集中。伊宁的降水主要以短时性降水(1~4h)为主,多发生在前半夜至后半夜,1h降水频次最多的是量级≤1mm的降水,但1.1~3mm量级的降水贡献率最高。  相似文献   

5.
田阳县近50a降水变化趋势特征分析   总被引:3,自引:3,他引:0  
利用气候倾向率及相关系数分析方法,对站田阳站1959~2008年的年、季降水量、降水日数作统计分析。结果发现,田阳站50a年、季降水量随时间变化总趋势平稳少变,年降水气候倾向率为3.09mm/10a;小雨、中雨量级降水日数气候倾向率呈负值,小雨日数50a趋减9d;大雨以上强降水气候倾向率呈正值,表明强降水日数趋增。  相似文献   

6.
基于临夏州2006—2018年4—9月自动气象站逐日小时降水量,在传统降水百分位法、Z指数法和平方根变换法3种方法中,确定了短时强降水阈值的最佳计算方法,在此基础上分析临夏州短时强降水的时空分布特征。平方根变换法确定的临夏州短时强降水阈值为14.6 mm·h^(-1)。临夏州短时强降水空间分布表现为自中南部分别向西北和东南减少,短时强降水年平均出现次数为7.3次,2018年出现次数最多;7—8月短时强降水出现频次最多,占短时强降水总频次的81.1%,8月达到最高峰,占总频次的55.8%;短时强降水日变化呈4峰分布,短时强降水主要出现在18:00—23:00,占短时强降水总频次的55.8%;小时最大降水量为55.8 mm,出现在22:00;短时强降水持续时间为1 h的占90.5%,同一时次出现1站次短时强降水的占93.3%,临夏州短时强降水多为阵发性,且空间分布多为孤立零散。  相似文献   

7.
利用广东省86个常规气象观测站1961—2010年的逐日降水资料,分析近50年广东省降水气候特征,探讨不同等级降水空间分布及随时间变化特征。结果表明:广东省降水丰沛,年均降水量多为1 500~2 000 mm;降水气候特征的区域差异较大,不同区域降水量与降水日数分布差异显著;各月的降水日数差异没有降水量月分布的差异明显,非汛期的日降水量较小,而汛期降水日数多且日降水量大;小雨日和中雨日的区域差异小,大雨日、暴雨日、大暴雨日的大值中心主要集中在广东省的三大暴雨中心地区 (清远中心、阳江中心、海陆丰中心),雨日量级分布大致由北向南逐渐增强,且随着降水等级的增加降雨日数迅速减少;小雨、中雨和大雨的降水贡献率均由粤北地区向沿海地区递减,暴雨和大暴雨的贡献率由粤北向沿海递增;小雨日数显著减少、大雨以上日数略有增多,总降水日数也呈减少趋势;小雨和中雨的贡献率呈减少趋势,大雨以上贡献率增多,使年均降水量呈增多趋势。   相似文献   

8.
利用2014—2020年西安—咸阳机场高速公路(简称西咸高速公路)和西安—汉中高速公路(简称西汉高速公路)交通气象站和临近国家自动气象站的逐小时降水资料,分析了西咸、西汉高速公路降水的时空分布特征。结果表明:西咸、西汉高速公路年降水量和降水日数由北向南逐渐递增。夜雨量大于昼雨量,夜雨出现的时间长、强度大。5—10月降水量占全年的69%~91%,其中6、9月偏高较多。5—10月小雨降水日数最多,暴雨日数最少,暴雨月平均降水量和降水强度的最大值均出现在7、8月。西咸、西汉高速公路为夜间至清晨和午后降水峰值型。西汉高速短时强降水发生频次较多,而西咸高速公路的极端强降水发生频次明显多于西汉高速,各公路点1 h最大降水量均发生在7、8月。21:00—01:00高速公路的降水量和强度偏大,且西汉高速公路多为山路,滑坡、泥石流等灾害发生的风险增大,尤其发生在夜间,危害更大。  相似文献   

9.
利用2010—2018年夏季阿勒泰地区112个自动气象站逐时降水资料,采用常规统计方法分析了阿勒泰地区夏季短时强降水时空分布特征。结果表明,2010—2018年夏季阿勒泰地区短时强降水的空间分布极不均匀,主要发生在阿尔泰山和沙吾尔山迎风坡、地形陡升区、喇叭口地形、戈壁和乌伦古湖交界区等复杂地形附近;发生次数年际变化大,2017年出现最多达95次,2010年出现最少为10次;极大值出现在2017年6月30日15:00哈巴河县合孜勒哈克村(37.5 mm/h),极小值出现在2015年8月9日17:00福海县工业园区(22.5 mm/h)。旬、日发生频次变化均呈单峰型,旬峰值出现在7月上旬,日高峰值时段出现在午后至傍晚(19时左右);各站短时强降水持续时间为1—2 h,区域性短时强降水最长持续时间为5 h;2017年短时强降水出现最多、持续时间最长、范围最广、强度最强。  相似文献   

10.
利用地面区域自动站逐时降水观测资料,采用百分位方法,对2008—2017年5—9月鄂西南极端降水特征进行分析,利用卫星云图TBB和NCEP 0.5°×0.5°再分析场资料,对典型个例进行成因分析。结果表明:(1)鄂西南小时强降水和日降水量极端阈值范围差别较大,各站降水极端性程度没有可比性。小时强降水和大暴雨出现频率高的站点主要分布于有地形辐合和地形抬升的山脉四周,小时强降水多发生在00:00—03:00和16:00—19:00时段;(2)鄂西南极端降水发生最多的是东南部海拔高度相差大的鹤峰附近,低空急流和地形作用,使中尺度对流系统在东移过程中存在后向传播,导致降水持续时间长,累计雨量大;(3)对于不同时期的极端降水过程,其形成的热力、动力作用和垂直结构均不相同,6月的暖区极端降水,热力作用占主导,高层系统先于低层发展,而9月极端降水锋区明显,以动力作用为主,系统整层发展加强。  相似文献   

11.
郭军  熊明明  黄鹤 《山东气象》2019,39(2):58-67
使用2007—2017年京津冀地区156个气象站暖季(5—9月)逐小时降水观测数据,根据地形将研究区域分为6个分区,分析各分区降水量季节内变化和日变化特征,结果表明:1)京津冀的多雨区主要位于沿燕山南麓到太行山,存在多个降雨中心。2)各分区降水量季节内特征总体表现为单峰型,即7月降水量最大,7月第3候至8月第4候是主汛期,8月降水量次之,5月最少。3)降水呈夜间多,白天少的特点,7月初之前的前汛期降水多发生在16—21时;主汛期降水呈双峰型,峰值在17—22时,次峰值出现在00—07时;8月中旬以后的后汛期多夜间降水,峰值多出现在00—08时。4)高原山区多短历时降水,长历时累计降水对季节降水贡献率大值区位于平原地区,而持续性降水贡献率大值位于太行山区和燕山迎风坡的西部。  相似文献   

12.
基于1981—2018年内蒙古地区103个地面气象观测站的逐日降水资料,运用趋势分析方法,分析近38 a内蒙古降水量、降水日数和降水强度的时空变化特征。结果表明,不同等级降水量和降水日数呈现弱减少趋势,不同等级降水强度年际变化趋势不明显,但是湿润区的各等级降水年际波动最大,干旱区的中雨强度年际波动明显大于其他气候区。各等级降水对总降水的贡献率从大到小依次为小雨、中雨和大雨,但地区分布不均。各气候区小雨日数贡献率均在80%~90%,并且小雨量占比从内蒙古东北部湿润区到西北部的干旱区逐渐上升。内蒙古各等级降水均呈现自东向西递减的空间分布特征,其中降水量和降水日数的高值区主要分布在东北部地区,降水强度的高值区主要分布在东南部地区。2010年以来,内蒙古东北部和中部偏西地区的小雨等级的降水量和小雨日数减少,小雨等级的降水强度增加;在内蒙古西北部各等级降水量和降水强度均增加,大雨等级的降水量、降水日数和降水强度的增加趋势尤为显著。  相似文献   

13.
The results of an analysis of the temporal and spatial distribution of typhoon precipitation influencing Fujian from 1960 to 2005 show that typhoon precipitation in Fujian province occurs from May to November, with the most in August. There has been a decreasing trend since 1960. Typhoon precipitation gradually decreases from the coastal region to the northwestern mainland of Fujian and the maximum typhoon precipitation occurs in the northeast and the south of Fujian. Typhoon torrential rain is one of the extreme rainfall events in Fujian. High frequencies of typhoon torrential rain occur in the coastal and southwest regions of the province. With the impact of Fujian’s terrain, typhoon precipitation occurs more easily to the east of the mountains than to the west. Atmospheric circulation at 500 hPa over Asia and sea surface temperature anomalies of the equatorial eastern Pacific are analyzed, with the finding that they are closely connected with the anomaly of typhoon precipitation influencing Fujian, possibly mainly by modulating the northbound track of typhoons via changing the atmosphere circulation to lead to the anomaly of typhoon precipitation over the province.  相似文献   

14.
本文利用贵州省黔南州12个国家级自动气象站1989-2019年的地面降水观测资料,采用气候倾向率、线性回归、Kriging法、滑动t检验、暴雨风险因子加权分析等方法,分析了黔南州1989-2019年暴雨时空分布特征及风险落区,主要得出以下结论:(1)黔南州暴雨日数呈现增长趋势,暴雨主要出现在5-9月,大暴雨主要出现在5-8月。(2)暴雨在黔南州有两大中心,分布位于中东部的都匀地区和西部的长顺地区;黔南州大暴雨主要在都匀至三都地区,其次影响长顺地区。(3)黔南州大部分地区暴雨均呈现增加趋势,暴雨气候倾向率主要有三个强中心,分别为长顺、贵定、三都。(4)6月暴雨集中在都匀地区,7-8月南多北少,9月东部西部多、中部偏少;大暴雨5月东部西部多、北部东南部偏少,6月集中在东部都匀、三都地区,8月主要集中在东部三都、西部长顺地区。(5)暴雨日数在2013年前后存在一次突变,暴雨历史风险落区与趋势风险落区大值区主要在东部及西部地区,高风险与较高风险面积和的占比分别为黔南州总面积的30.3%、28.1%。  相似文献   

15.
近46年影响福建的台风降水的气候特征分析   总被引:17,自引:7,他引:10  
对1960~2005年46年间影响福建的台风降水进行时空分析,结果表明:影响福建的台风降水主要发生在5~11月,8月是台风降水最多的月份;自1960年以来台风降水整体呈下降趋势;在地域分布上台风降水由闽南沿海向闽西北内陆逐渐减小,最大台风降水出现在闽南和闽东北地区;台风暴雨是福建地区的极端强降水事件之一,台风暴雨频发区主要集中在沿海及闽西南地区;受福建山地地形作用山脉以东的台风暴雨发生的概率要大大高于山脉西侧地区.台风降水的异常与亚洲地区500 hPa大气环流和赤道东太平洋海温异常关系密切,它们可能主要通过大气环流的改变进而对影响中国台风北上路径起到调制作用,并最终引起福建地区台风降水的异常.  相似文献   

16.
地形对低涡大暴雨影响的数值模拟试验   总被引:12,自引:2,他引:12  
崔春光  房春花  胡伯威  王中 《气象》2000,26(8):14-18
用MM5模式对1998年6月28 ̄29日长江三峡及其附近的低涡大暴雨过程作了初步的模拟研究。通过两种地表方案模拟的对比表明,四川盆地东侧山地对西南低涡的产生没有明显影响,但对这次低涡暴雨的强度及其分布有重要影响,主要表现在:涡前暖湿气流受大巴山-神农架山脉拦截形成迎风麓大暴雨带,鄂西南山区南坡也有迎风坡暴雨区,降水系统在东移过程中受盆地东侧整个山体阻滞迫使上游降水显著增强,下游降水系统在东移过程中  相似文献   

17.
该文利用2010—2019年4—8月遵义13个国家站逐时地面降水观测资料,从年变化、月变化、日变化以及空间分布等多个角度进行统计,从不同等级雨强的时空分布进行分析,初步得出了遵义短时强降水事件的时空分布特征:①从短时强降水总频次的空间分布上看,东部发生频次较其余地区高;4月,发生频次地区差异小;5—8月,地区差异大。②从月分布来看,短时强降水高频中心有如下变化:4月集中在东北部、5月在南部和东南部、6月西移北抬到西部和中部、7月西移南压到西部和南部、8月东北移至东北部,高频中心的变化和副热带高压的南北位移有很好的对应。③从年分布来看,短时强降水事件平均每年发生49次,最多的是65次(2019年),最少的是33次(2017年)。4—6月事件频次迅速增加,6月到达峰值,6—8月事件频次开始逐渐减少,74.1%的短时强降水事件发生在夏季,尤其以6月份居多。④从日变化来看,08—13时短时强降水事件发生频次逐渐减少,13时达到一日中最低值,13—07时事件发生频次逐渐增加,有3个峰值,17—19时、20—22时和01—07时,期间有2个短暂的间歇期。4—7月白天平均发生频次较夜间少,8月反之。⑤6—8月是较高等级短时强降水事件的高发季节,尤其以6月份居多,但统计个例中≥70 mm/h的雨强却是在5月份出现。  相似文献   

18.
利用常规气象探测资料、NECP和EC高时空分辨率再分析资料,对2019年6月25日和28日出现在中昆仑山北坡两场强降水过程进行分析。表明:25日过程范围大、持续时间长的强降水,28日为分散、对流性强降水;两场天气过程影响系统有高空急流、中层低值系统、低层辐合线;25日强降水系统移动缓慢、冷空气从东西两侧进入昆仑山北坡,同时西太副高西侧西南风将大量水汽输送至昆仑山北坡,低层存在偏东和偏北、偏西风辐合;28日强降水低值系统移动迅速、对流层有逆温和不稳定,午后升温和低层弱辐合、山前偏北风是对流触发条件。中高层偏西偏南风水汽输送至昆仑山北坡上空,在低层合适的风场将水汽输送汇集到昆仑山北坡是强降水的关键,25日水汽输送强度和厚度明显强于28日。地形对于降水作用表现在热力和动力两方面。  相似文献   

19.
1961-2012年京津冀地区不同等级降水日数时空演变特征   总被引:1,自引:0,他引:1  
利用1961-2012年京津冀地区78个气象站逐日降水资料,采用趋势分析、Morlet小波和经验正交函数(EOF)等方法,分析京津冀地区不同等级降水日数的时空演变特征。结果表明:近52 a来,京津冀地区各等级降水日数的变化趋势不明显。空间分布上,雨日总数和小雨日数呈自西北向东南递减的特征;中雨日数和大雨日数分别存在两个大值中心,二者大值中心的位置相似,一个位于京津冀地区东北部,另一个位于西部太行山区;暴雨日数的空间分布特征不明显,具有随机性。雨日总数和小雨日数存在准13 a和准6 a两个尺度的振荡周期;中雨日数、大雨日数及暴雨日数存在15-18 a和8-11 a两个尺度的振荡周期。EOF第一模态分析表明,京津冀地区各等级降水日数在全区具有较好的一致性;第二模态分析表明,雨日总数、小雨日数、中雨日数和大雨日数具有南北反位相的特征,暴雨日数具有西北部和东部多(少)、中部和西部少(多)的分布特征。  相似文献   

20.
使用2019年、2020年5—8月江苏省降水分析场及站点观测资料,生成具有定量降水估测(Quantitative Precipitation Estimation,QPE)不确定性时间和空间结构的集合QPE,并用观测降水对集合QPE进行了确定性和概率性检验。确定性验证说明集合QPE能在总体上减小降水量的绝对误差和均方根误差,但也加重了某些区域的降水低估。集合平均能提高估测降水的准确率并减小空报率,也会使漏报增多,这使小雨的TS评分有所降低,但各量级降水TS评分仍能保持在较高水平。集合QPE对各量级降水都有较优的Brier评分,降水量级越大,估测效果越好。集合的离散度较小,且将集合成员排序后,观测值落在两头的频率更高,也反映了离散度偏小。此外,观测值大于集合成员最大值的频率更高,说明集合QPE倾向于低估降水。随着概率阈值的增大,集合估测降水发生的命中率(POD)和假警报率(POFD)逐渐增大,但POD增大的程度比POFD大得多,使相对作用特征曲线为折线。不同概率阈值下的POD和POFD体现了集合QPE对各量级降水都有较高的估测技巧,其中对小雨和中雨分辨能力最好。集合估测小雨和特大暴雨发生概率小于实际频率的情况较为严重,而估测的中雨和大雨发生概率与实际降水的发生频率非常接近,有很高的可靠性,但总体上集合QPE仍是倾向于低估降水的发生概率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号