首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
利用常规气象观测资料、NCEP 1°×1°FNL资料和多普勒雷达、卫星TBB等资料,对2016年6月1—2日和18—19日江西省北部两次对流性暴雨过程进行对比分析。结果表明,高空冷涡、西太平洋副热带高压、中低层急流、高空槽等共同作用导致两次暴雨发生。中层有冷空气影响,低层深厚西南急流维持时,更利于降水的对流性特征维持。两次暴雨过程强降水由低质心较强回波的“列车效应”造成。强降水回波带有多单体风暴和强降水超级单体风暴特征时,强降水效率更高。两次过程水汽收支中水汽通量散度项由正转负,水汽垂直输送项由负转正,中低层水汽辐合将低层大量水汽向上输送至中高层,利于强降水的形成。差动涡度平流中心与上升运动中心吻合,其导致垂直动力强迫,促进扰动不稳定和垂直运动的发展。强上升运动区南北两侧垂直经向环流和反环流的形成,为强暴雨的发生维持提供了持续的强水汽水平输送和辐合抬升条件。  相似文献   

2.
江西一次特大暴雨中尺度对流系统特征对比分析   总被引:2,自引:0,他引:2  
利用FY-2E云顶亮温(TBB)资料,雷达回波资料以及非静力中尺度数值预报模式WRF的模拟结果,对比分析了2010年6月19日江西特大暴雨过程中TBB低值接近但地面降水量差异显著的两个中尺度对流系统(MCS)。结果表明:MCS1为新生对流在有利的水汽、动力和热力条件下迅速发展形成的强盛中尺度对流系统,中低层辐合高层辐散、气旋性涡旋发展旺盛,对流云柱内强上升运动将辐合的大量低层水汽输送至中高层,云水、云冰含量增加,两者重叠层加厚,水物质总量增加,造成地面出现强降水;MCS2尾随层云区的弱辐合仅出现在中层,水汽辐合量和液态水物质含量显著偏小,对应地面弱降水,但是由于高层云冰含量与MCS1对流云区相当,高层雷达回波强度相当,导致卫星云图上TBB出现与MCS1相同的低值。  相似文献   

3.
利用常规气象资料、AREM模式输出资料,对发生在2005年梅雨期湖北的一次暴雨过程进行了中尺度数值模拟分析。分析结果表明,强降水发生时,在对应的中尺度对流系统中存在两个分别位于300hPa和600hPa附近的强上升运动中心,低层辐合、高层辐散的单模态分布是上升运动得以维持的重要条件;环境风场并不能控制中尺度对流系统的移动方向,中尺度对流系统向低层涡度增加的地方移动;强降水形成可概括为低层切变线东移诱发地面低压发展、引起垂直上升运动迅速增加、触发低层水汽的垂直输送和高不稳定能量强烈释放等过程。  相似文献   

4.
利用ERA-interim再分析资料和国家自动站观测资料,分析了四川盆地2020年8月10日~14日一次持续性强降水过程的特征及成因。结果表明:天气尺度系统的有效配合给此次暴雨过程提供了有利的环流背景,在冷空气及西南水汽的汇聚下,触发此次持续性强降水,整个过程可分为4个阶段,降水带自盆地西部向东移动;各暴雨区在强降水时刻,低层正涡度、负散度的强辐合,高层负涡度、正散度的强辐散抽吸作用均利于大气的上升运动,给持续强降水提供动力条件;相较于第二、三阶段,第一、四阶段的涡度、散度及垂直速度数值明显偏小,使得累计降水量偏少;各阶段降水过程的强降水中心、水汽辐合、上升运动区均位于中、低层低值系统(高原低涡、西南低涡、切变线)的东南侧;第二阶段降水过程中较强的水汽辐合及整层大气一致且极强的上升运动将水汽抬升输送至对流层中高层,导致该阶段累计降水量最大。   相似文献   

5.
利用常规气象探测、FY卫星、多普勒天气雷达以及再分析等资料,对2021年6月15至16日出现在中昆仑山北坡极端暴雨成因进行分析。表明:此次暴雨西伯利亚到中亚有低槽稳定维持,昆仑山北坡环境大气逐渐变的潮湿不稳定。500 hPa低槽东移动分成两段,位于中亚低槽与印度半岛西北部低槽南北叠加,地面东、西两股冷空气进入盆地,使得不同性质空气在充分混合。东风急流中心在且末至若羌,在和田中部有偏东与偏西风辐合、水汽辐合、强的水汽输送、强上升运动。水汽输送主要距地4000米以下,水汽源位于天山南坡、高原南坡。地面的热力不均匀、高空急流、地面辐合线、地形等作用使得降水强度增强。强降水以γ小尺度系统为主,在地面辐合线附近表现为快速生消的特征。  相似文献   

6.
利用常规观测资料、地面自动站资料、雷达资料、卫星云图及NCEP 1°×1°再分析资料,对2015年6月20日和8月19日发生在林芝市的两次暴雨过程进行对比诊断分析。结果表明:“6.20”过程发生在副热带高压稳定少动的环流背景下,“8.19”过程发生在伊朗高压东伸与西太副高形成两高之间切变线的环流形势下;暴雨区低层水汽强烈输送和垂直运动强烈发展以及对流层中低层辐合、高层辐散的典型配置是两次过程共同的特点,“8.19”过程水汽输送较“6.20”更为通畅,配合低空急流,辐合更强,且“8.19”过程较历史个例而言,具有移动缓慢,系统深厚的特点,强降水落区同强垂直上升运动、低空强辐合及高空强辐散、水汽通量辐合中心相一致;“8.19”过程有明显的冷空气下传过程,存在强的高低空急流,且云顶温度更低,对流系统发展更高,云顶温度低于-60℃中心维持时间较长,强降水出现在云顶温度低值中心及其梯度大值区内。   相似文献   

7.
利用气象观测资料、NCEP/NCAR 1°×1°再分析资料以及GDAS资料,对2021年10月2-7日山西持续性强降水天气过程进行分析。结果表明:稳定的乌拉尔山低槽后部冷空气扩散,中纬度短波槽东移,与副热带高压外围西南暖湿气流持续交汇,同时高低空急流耦合形成强烈上升运动,低层切变线和地面辐合线稳定维持,及低层水汽不断输送并形成辐合,为持续性强降水的发生发展提供有利动力和水汽条件。此次强降水过程分为对流性降水和稳定性降水2个阶段,2阶段水汽输送通道的源地、路径、高度均有明显差异,但水汽输送贡献率均以对流层中低层山西南侧的水汽输送占主导地位。降水开始前,对流层中上层存在对称不稳定,大气可降水量明显跃增;对流性降水阶段,干空气不断入侵,对流不稳定快速建立与释放,对流层中低层水汽辐合区与强上升气流配合,导致山西出现强对流天气。地形的阻挡、抬升及地形收缩作用,对局地极端强降水具有增幅作用。  相似文献   

8.
韩珏靖  陈飞  沈建 《气象科学》2012,32(S1):110-119
本文利用Micaps资料、江苏自动气象站数据、常州多普勒雷达观测和NCEP全球分析场,从降水实况、环流背景、雷达回波特征、动力和热力条件等方面,对2009年8月2日和2011年7月13日两次江苏盛夏局地特大暴雨过程进行了分析和比较。结果表明:大尺度鞍型场背景下副热带高压和大陆高压的同时增强使得降水系统更集中、对流发展更旺盛,降水中心在低空切变的南侧、地面辐合的北侧、水汽在大陆东部输送的顶点。而副热带高压相对较弱的情形下,有利于热带低值系统外围偏东风场的持续水汽输送,对流发展较弱,但持续时间更长;配合低层深厚的中尺度触发系统,使得局地降水强度更有爆发力,降水中心靠近水汽在大陆东部的输送起点。  相似文献   

9.
利用气象观测资料、NCEP/NCAR 1°×1°再分析资料以及GDAS资料,对2021年10月2-7日山西持续性强降水天气过程进行分析。结果表明:稳定的乌拉尔山低槽后部冷空气扩散,中纬度短波槽东移,与副热带高压外围西南暖湿气流持续交汇,同时高低空急流耦合形成强烈上升运动,低层切变线和地面辐合线稳定维持,及低层水汽不断输送并形成辐合,为持续性强降水的发生发展提供有利动力和水汽条件。此次强降水过程分为对流性降水和稳定性降水2个阶段,2阶段水汽输送通道的源地、路径、高度均有明显差异,但水汽输送贡献率均以对流层中低层山西南侧的水汽输送占主导地位。降水开始前,对流层中上层存在对称不稳定,大气可降水量明显跃增;对流性降水阶段,干空气不断入侵,对流不稳定快速建立与释放,对流层中低层水汽辐合区与强上升气流配合,导致山西出现强对流天气。地形的阻挡、抬升及地形收缩作用,对局地极端强降水具有增幅作用。  相似文献   

10.
利用常规观测资料、NCEP再分析资料、地形数据等,对2019年7月7—13日青藏高原东南侧滇西北地区持续性强降水天气过程进行综合分析。结果表明:西太平洋副热带高压控制中南半岛,伊朗高压稳定在印度西部附近,中高纬冷空气不断渗透南下,使印度东部低值系统长时间存在,其前部西南气流与副高西侧偏南气流汇合后持续影响滇西北,有利于孟加拉湾水汽向滇西北输送。强降水期间滇西北地区低层水汽通量散度呈负值,水汽辐合较强。整层大气低层辐合—高层辐散,上升运动强烈,抽吸作用明显;中低层大气高能高湿,处于对流不稳定状态。滇西北处于喇叭地形底部,两侧高大地形有利于引导水汽在滇西北汇聚,为持续强降水提供充足水汽;怒江州处于迎风坡,地形强迫抬升增强降水,使得怒江州降水量大于迪庆州和丽江市。  相似文献   

11.
利用1981—2020年5—9月天山南坡16个气象站逐日降水资料和NCEP/NCAR GDAS再分析资料,分析天山南坡暖季暴雨过程的环流形势,并采用HYSPLIT模式,模拟追踪水汽源地及输送特征。结果表明:天山南坡暖季暴雨主要发生在南亚高压双体型、500 hPa以上西南急流(气流)、700 hPa切变辐合以及天山地形辐合抬升的重叠区域。水汽主要源自中亚、大西洋及其沿岸、地中海和黑海及其附近,经TKAP(塔吉克斯坦、吉尔吉斯坦、阿富汗东北部、巴基斯坦北部和印度西北部)、南疆、北疆关键区,分别从偏西、偏南、偏北通道输入暴雨区,700 hPa以上偏西通道、以下偏北通道占主导地位,且贡献最大的是南疆关键区。源自中亚的水汽主要输送至暴雨区700 hPa及以下,对暴雨的贡献较大,且沿途损失较大;源自大西洋及其沿岸、地中海和黑海及其附近的水汽主要输送至暴雨区700 hPa以上,对暴雨的贡献较小。另外,中低层还存在源自北疆、南疆、北美洲东部、蒙古的水汽。基于上述特征,建立了天山南坡暖季暴雨过程水汽三维精细化结构模型。  相似文献   

12.
利用1981—2020年5—9月天山南坡16个气象站逐日降水资料和NCEP/NCAR GDAS再分析资料,分析天山南坡暖季暴雨过程的环流形势,并采用HYSPLIT模式,模拟追踪水汽源地及输送特征。结果表明:天山南坡暖季暴雨主要发生在南亚高压双体型、500 hPa以上西南急流(气流)、700 hPa切变辐合以及天山地形辐合抬升的重叠区域。水汽主要源自中亚、大西洋及其沿岸、地中海和黑海及其附近,经TKAP(塔吉克斯坦、吉尔吉斯坦、阿富汗东北部、巴基斯坦北部和印度西北部)、南疆、北疆关键区,分别从偏西、偏南、偏北通道输入暴雨区,700 hPa以上偏西通道、以下偏北通道占主导地位,且贡献最大的是南疆关键区。源自中亚的水汽主要输送至暴雨区700 hPa及以下,对暴雨的贡献较大,且沿途损失较大;源自大西洋及其沿岸、地中海和黑海及其附近的水汽主要输送至暴雨区700 hPa以上,对暴雨的贡献较小。另外,中低层还存在源自北疆、南疆、北美洲东部、蒙古的水汽。基于上述特征,建立了天山南坡暖季暴雨过程水汽三维精细化结构模型。  相似文献   

13.
中亚低涡背景下阿克苏地区一次强降水天气分析   总被引:1,自引:0,他引:1  
郭楠楠  周玉淑  邓国 《气象学报》2019,77(4):686-700
为了加强对新疆暴雨过程的中尺度系统发展机理的认识,利用美国环境预测中心的FNL、欧洲中期数值预报中心的全球再分析资料、中国气象局提供的地面自动气象站观测资料、中国国家卫星气象中心提供的卫星辐射亮温(TBB)资料及WRF高分辨率数值模拟对2013年6月17—18日发生在新疆阿克苏地区的一次暴雨天气过程进行分析。结果表明,此次降水过程是发生在中高纬度“两脊一槽”的环流形势下,中亚低涡为这次暴雨的发生提供了有利的天气尺度动力及水汽条件;中亚低涡环流与天山南脉特殊地形造成的气流绕流叠加生成的中尺度辐合线是此次强降水的重要中尺度影响系统,山谷地形热力性质差异造成的下坡风推动辐合线移动,辐合线上发展的强对流引发了阿克苏地区的强降水。WRF模拟结果能够基本再现本次天气过程的降水落区、强度以及风场演变等。结合观测以及模拟资料进行的初步分析显示,西天山的阻挡导致偏南风在西天山南坡山谷附近产生堆积和辐合,山谷附近有局地的地形辐合线形成。同时,随着大尺度环流形势的调整,中亚低涡移动至阿克苏地区附近后,低涡南部的偏西气流一部分直接越过西天山变为西北风,另一部分穿过伊犁河谷转为东北风,这两支气流共同加剧了天山南脉阿克苏地区的偏北气流,促进了西天山南坡山谷附近中尺度辐合线的加强。辐合线以东的偏东气流带来的水汽在天山南脉前堆积,随着夜间山谷下坡风的增强作用,中尺度辐合线在向东南方向推进过程中不断发展加强,配合山脚堆积的水汽和辐合抬升,不稳定能量释放,对流发展,为阿克苏地区带来强降水天气。   相似文献   

14.
利用常规天气资料及地面自动站、风廓线雷达、新一代天气雷达资料和ERA-Interim逐6 h 0.125°×0.125°再分析资料,分析2015年5月19日福建西部山区一次极端降水的中尺度特征。结果表明:(1)极端降水分为锋前暖区降水和锋面降水两个阶段,暴雨区位于低空西南急流轴左侧,水汽充足,冷暖空气交汇,不稳定能量大,抬升凝结高度和自由对流高度低,大气可降水量大及中等强度的垂直风切变形成有利于中尺度对流系统(mesoscale covective system, MCS)发展的环境条件。(2)锋前暖区降水期间,西南气流携带高能量和水汽充足的空气移入暴雨区被中尺度边界附近的冷出流空气抬升,不断产生新的对流单体,对流单体向东北偏东方向移动,排列形成短雨带;若干条东北—西南向长度不等的短雨带在中尺度出流边界北侧建立,缓慢向东移动,依次重复影响关键区;暴雨关键区存在辐合线和风速辐合,为降水提供了良好的动力抬升条件;向西南开口的河谷地形加强了对流的发展;对流单体不断后部建立和东北西南向多个短雨带重复影响同一地区的列车效应是此阶段MCS主要发展方式。(3)锋面降水期间,对流单体在低涡切变南侧风速辐合、水汽和能量大值区发展东移南压,中高层先于低层转偏北气流,表现出前倾特征,垂直风切变加大,冷空气从中高层先扩散南下,与低层暖湿空气交汇使对流加强,冷暖气流的交汇叠加风速辐合使得强降水加强并维持。对流单体后向传播向东移动产生的列车效应是此阶段MCS主要发展方式。  相似文献   

15.
应用昆仑山北坡小时、分钟降水资料以及和田C波段多普勒天气雷达资料,分析近8年该区域短时强降水天气分型,对比分析对流云与混合云2型5类短时强降水的回波强度、顶高、垂直液态含水量等回波特征量值以及持续时间的差异.得出昆仑山北坡短时强降水中,中亚低涡(槽)型环流形势和块状多单体回波最多,昆仑山北坡无超级单体回波.需高度关注3...  相似文献   

16.
利用常规观测、区域自动站逐小时降水、NCEP/NCAR和GDAS再分析等资料,对比分析了2018-2019年哈密市三次暴雨过程的环流背景、水汽输送、辐合(辐散)和水汽收支等特征。结果表明:三次暴雨过程均发生在巴尔喀什湖地区有低涡、蒙古地区有高压脊的环流背景下,当对流层高层南亚高压中心东移且东部中心强度增强、中亚西风槽前存在强西南急流,对流层中层欧洲高压脊偏强、低涡偏南、西太副高偏西偏北时,有利于暴雨落区偏南、降水强度强,反之暴雨落区偏北、降水偏弱。三次暴雨过程水汽源地、水汽输送路径及水汽贡献有所差异,水汽源地的多源性和源地水汽贡献量的多少会对哈密市降雨的强弱有一定的影响。对流层中低层蒙古的反气旋有利于暖湿空汽沿着河西走廊的偏东急流输送至暴雨区,有利于暴雨的增幅。三次过程不同边界水汽收支量有所差异,东边界的低层和西边界的中高层为水汽的主要输入边界。强降水区各边界水汽净流入的强度、维持时间以及水汽的辐合强度对强降水的发展和维持起关键作用。  相似文献   

17.
基于2017-2019年南疆地基GPS大气可降水量(下文简称“GPS-PWV”)、常规探空水汽廓线计算的大气可降水量(下文简称“RS-PWV”)和逐时降水资料,统计分析南疆西部和昆仑山北坡GPS-PWV时空变化特征、夏季不同海拔高度不同降水量级下GPS-PWV变化与实际降水的对应关系。结果表明:(1)南疆西部和昆仑山北坡GPS-PWV与RS-PWV,二者具有符合预期的很高的相关性。(2)不同海拔高度站点GPS-PWV空间分布差异明显,大部分站点GPS-PWV随海拔高度的增加而降低。(3)各站点GPS-PWV逐月变化均呈单峰型,冬季12月或1月最小,夏季7、8月最大;春、夏季各站GPS-PWV距平日变化为单峰型,秋、冬季GPS-PWV距平日变化除秋季乌恰站、若羌站为单峰型外,其它均为三峰或四峰型。(4)各站有、无降水时PWV平均值差异明显,昆仑山北坡差异更大;降水发生前GPS-PWV已开始上升,南疆西部PWV峰值主要出现在降水前0~1 h,昆仑山北坡PWV峰值主要出现在降水前0~3 h和7~9 h。  相似文献   

18.
利用云南省自动气象站雨量资料、卫星和闪电定位仪资料、雷达回波资料、NCEP 1 °×1 °再分析资料和地面、高空常规观测资料对云南一次典型的台风前侧短时强降水过程的成因进行分析,结果表明:在2017年13号台风“天鸽”西行影响云南的天气背景之下,短时强降水出现在台风前侧700 hPa风速辐合区和边界层辐合线附近。台风前侧偏东低空急流向云南境内输送水汽和能量,边界层辐合线触发垂直上升运动,700 hPa风速辐合区利于垂直上升运动的维持和加强,促使水汽的辐合与不稳定能量的释放,引发短时强降水。在中等强度深层垂直风切变的作用下,云南东部中尺度对流系统(MCS)频繁产生并向西传播发展,MCS相互作用组织成飑线系统,在东北气流的引导下,飑线从云南中部移至云南西南部,MCS和飑线是大范围短时强降水的直接影响系统。   相似文献   

19.
应用常规观测资料、NCEP再分析资料和卫星云图产品,对2011年7月31日黑龙江省西部暴雨天气成因进行诊断分析。讨论了产生暴雨的天气系统特征,大气不稳定条件及产生暴雨的水汽条件和动力触发机制。结果表明:暴雨是由低涡、低涡槽前暖湿气流与冷空气的共同影响产生的。低层强盛的偏南气流建立起水汽通道,将水汽源源不断地向暴雨区输送。低层增温增湿使得大气层结不稳定。低层较强的西北气流与强盛的东南暖湿气流汇合,产生强切变,辐合上升运动增强,为暴雨的产生提供了动力条件,有利于不稳定能量释放。高层辐散与低层辐合相配合,有利于上升运动发展和维持。地面中尺度低压和中尺度辐合线为中尺度云团的发展和维持提供了条件;中尺度云团在暴雨区旋转停留近21 h,这是暴雨发生的主要原因。  相似文献   

20.
利用常规观测资料、地面区域气象自动站加密资料、卫星以及NCEP再分析资料,对2010年6月、2012年6月、2015年6月3次发生在湖南怀化的暴雨天气过程进行对比分析。结果表明:(1)3次过程均是典型的低涡冷槽型暴雨过程,降雨分布在低涡东南侧及其向东伸展出的切变线附近,对于低涡沿切变线东移的暴雨过程,降雨分布在低涡移动的路径上。(2)中低层中尺度低涡或辐合中心是直接造成暴雨的系统,其发展演变和移动直接影响降雨的落区和持续时间,在卫星云图上反应为中尺度云团的生消。(3)孟湾、南海是怀化暴雨的水汽源地,暴雨发生在高温高湿的不稳定层结和强水汽辐合区域,强降雨是整层水汽通量和水汽辐合共同作用的结果,当两者同步增强并达到极值时,降雨也同步增强,当两者不同步时,不能使用单一要素判断降雨,而要综合考虑。(4)3次暴雨过程都是发生在低层正涡度、负散度和高层负涡度、正散度的高低空耦合结构下。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号