首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chemical solution processing method based on sol-gel chemistry (SG) was used to synthesize (1-x)Y2/3Cu3Ti4O12-xSrTiO3 (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25) ceramics successfully. The 0.85Y2/3Cu3Ti4O12-0.15SrTiO3 ceramics sintered at 1050 °C for 20 h showed fine-grained microstructure and high dielectric constant (ε′  1.7 × 105) at 1 kHz. Furthermore, the 0.85Y2/3Cu3Ti4O12-0.15SrTiO3 ceramics appeared distinct pseudo-relaxor behavior. Two electrical responses were observed in the combined modulus and impedance plots, indicating the presence of Maxwell-Wagner relaxation. Sr vacancies and additional oxygen vacancies had substantial contribution to the sintering behavior, an increase in grain growth, and relaxation behaviors in grain boundaries. The contributions of semiconducting grains with the nanodomain and insulating grain boundaries (corresponding to high-frequency and low-frequency electrical response, respectively) played important roles in the dielectric properties of (1-x)Y2/3Cu3Ti4O12-xSrTiO3 ceramics. The occurrence of the polarization mechanism transition from the grain boundary response to the electrode one with temperature change was clearly evidenced in the low frequency range.  相似文献   

2.
The microstructure and giant dielectric properties of Y3+ and Nb5+ co–doped TiO2 ceramics prepared via a chemical combustion method are investigated. A main rutile–TiO2 phase and dense ceramic microstructure are obtained in (Y0.5Nb0.5)xTi1-xO2 (x = 0.025 and 0.05) ceramics. Nb dopant ions are homogeneously dispersed in the microstructure, while a second phase of Y2O3 particles is detected. The existence of Y3+, Nb5+, Ti4+ and Ti3+ as well as oxygen vacancies is confirmed by X–ray photoelectron spectroscopy and X–ray absorption near edge structure analysis. The sintered ceramics exhibit very high dielectric permittivity values of 104–105 in the frequency range of 40–106 Hz. A low loss tangent value of ≈0.08 is obtained at 40 Hz. (Y0.5Nb0.5)xTi1-xO2 ceramics can exhibit non–Ohmic behavior. Using impedance spectroscopy analysis, the giant dielectric properties of (Y0.5Nb0.5)xTi1-xO2 ceramics are confirmed to be primarily caused by interfacial polarization.  相似文献   

3.
Different doping elements have been used to reduce the dielectric losses of CaCu3Ti4O12 ceramics, but their dielectric constants usually are undesirably decreased. This work intends to reduce their dielectric losses and simultaneously enhance their dielectric constants by co-doping Y3+ as a donor at A site and Al3+ as an acceptor at B site for substituting Ca2+ and Ti4+, respectively. Samples with different doping concentrations x = 0, 0.01, 0.02, 0.03, 0.05 and 0.07 have been prepared. It has been shown that their dielectric losses are generally reduced and their dielectric constants are simultaneously enhanced across the frequency range up to 1 MHz. The doped sample with x = 0.05 exhibits the highest dielectric constant, which is well over 104 for frequency up to 1 MHz and is about 20% higher than the undoped sample. Impedance spectra indicate that the doped samples have much higher grain boundary resistance than the undoped one.  相似文献   

4.
《Ceramics International》2016,42(7):8467-8472
Dielectric properties of Ca1−3x/2YbxCu3−yMgyTi4O12 (x=0.05, y=0.05 and 0.30) prepared using a modified sol–gel method and sintered at 1070 °C for 4 h were investigated. The mean grain sizes of the CaCu3Ti4O12 and co-doped Ca0.925Yb0.05Cu3−yMgyTi4O12 (y=0.05 and 0.30) ceramics were ≈15.86, ≈3.37, and ≈2.32 μm, respectively. Interestingly, the dielectric properties can be effectively improved by co-doping with Yb3+ and Mg2+ ions to simultaneously control the microstructure and properties of grain boundaries, respectively. These properties were improved over those of single-doped and un-doped CaCu3Ti4O12 ceramics. A highly frequency−independent colossal dielectric permittivity (≈104) in the range of 102–106 Hz with very low loss tangent values of 0.018–0.028 at 1 kHz were successfully achieved in the co-doped Ca0.925Yb0.05Cu3−yMgyTi4O12 ceramics. Furthermore, the temperature stability of the colossal dielectric response of Ca1−3x/2YbxCu3−yMgyTi4O12 was also improved to values of less than ±15% in the temperature range from −70 to 100 °C.  相似文献   

5.
《Ceramics International》2017,43(12):8664-8676
Single-phase Ca1−3x/2TbxCu3Ti4−xTbxO12 (0.025≤ x≤0.075) (CTCTT) ceramics with a cubic perovskite-like structure and a fine-grained microstructure (1.6‒2.3 µm) were prepared using a mixed oxides method. The results revealed that mixed valence states of Cu2+/Cu+, Ti4+/Ti3+, and Tb3+/Tb4+ coexisted in CTCTT. A multiphonon phenomenon in the Raman scattering at 1148, 1323, and 1502 cm−1 was reported for undoped and doped CTTO. Tb was mainly incorporated in the interior of the CTCTT grains rather than on the surface. The dielectric permittivity of CTCTT (εr'RT =3590‒5200) decreased relative to CCTO (εr'RT =10240) at f =1 kHz, but the dielectric loss of CTCTT (the minimum value of tan δ=0.12 at RT) increased as a result of Tb doping. The defect chemistry of CTCTT is discussed. The internal barrier layers capacitance (IBLC) model was adopted for impedance spectroscopy (IS) analysis. The activation energies of the grain boundaries (Egb) and semi-conductive grains (Eg) for CTCTT were determined to be 0.52 eV and 104 meV, respectively. The IS and defect chemistry analyses confirmed that the decrease in the dielectric permittivity was mainly due to a decrease in conductivity in the semiconducting CTCTT grains caused by the acceptor effect of Tb4+ at the Ti site, which resulted in a decrease in the IBLC effect.  相似文献   

6.
《Ceramics International》2017,43(8):6363-6370
The influence of partial replacement of Ti4+ ions by Te4+ in calcium copper titanate lattice on dielectric and non-linear current- voltage (I–V) characteristics was systematically studied. There was a remarkable increase in the values of the nonlinear coefficient (α) with Te4+ doping concentration in CaCu3Ti4-xTexO12 (where, x=0, 0.1, 0.2).For instance, the α values increase from 2.9 (x=0) to 22.7 (x=0.2) for ceramics sintered at 1323 K/8 h. The room temperature value of current density (J) at the electrical field of 250 V/cm for CaCu3Ti3.8Te0.2O12 ceramics is almost 400 times higher than that of the pure CaCu3Ti4O12 ceramics sintered at 1323 K. A systematic investigation into I–V behaviour as a function of temperature gave an insight into the conduction mechanisms of undoped and doped ceramics of calcium copper titanate (CCTO). The calculated potential barrier value for doped ceramics (~ 0.21 eV) dropped down to almost one third that of the undoped ceramics (~ 0.63 eV).  相似文献   

7.
《Ceramics International》2017,43(12):9178-9183
Low temperature preparation of CaCu3Ti4O12 ceramics with large permittivity is of practical interest for cofired multilayer ceramic capacitors. Although CaCu3Ti4O12 ceramics have been prepared at low temperatures as previously reported, they have rather low permittivity. This work demonstrates that CaCu3Ti4O12 ceramics can not only be prepared at low temperatures, but they also have large permittivity. Herein, CaCu3Ti4O12 ceramics were prepared by the solid state reaction method using B2O3 as the doping substance. It has been shown that B2O3 dopant can considerably lower the calcination and sintering temperatures to 870 °C and 920 °C, respectively. The relative permittivity of the low temperature prepared CaCu3Ti4−xBxO12 ceramics is about 5 times larger than the previously reported results in the literature. Furthermore, the dielectric loss of the CaCu3Ti4−xBxO12 ceramics is found to be as low as 0.03. This work provides a beneficial base for the future commercial applications of CaCu3Ti4O12 ceramics with large permittivity for the cofired multilayer ceramic capacitors.  相似文献   

8.
《Ceramics International》2017,43(9):7153-7158
In this work, Yb3+ was selected to replace the Y3+ in yttrium aluminum garnet (YAG) in order to reduce its thermal conductivity under high temperature. A series of (Y1-xYbx)3Al5O12 (x=0, 0.1, 0.2, 0.3, 0.4) ceramics were prepared by solid-state reaction at 1600 °C for 10 h. The microstructure, thermophysical properties and phase stability under high temperature were investigated. The results showed that all the Yb doped (Y1-xYbx)3Al5O12 ceramics were comprised of a single garnet-type Y3Al5O12 phase. The thermal conductivities of (Y1-xYbx)3Al5O12 ceramics firstly decreased and subsequently increased with Yb ions concentration rising from room temperature to 1200 °C. (Y0.7Yb0.3)3Al5O12 had the lowest thermal conductivity among investigated specimens, which was about 1.62 W m−1 K−1 at 1000 °C, around 30% lower than that of pure YAG (2.3 W m−1 K−1, 1000 °C). Yb had almost no effect on the coefficients of thermal expansion (CTEs) of (Y1-xYbx)3Al5O12 ceramics and the CTE was approximate 10.7×10−6 K−1 at 1200 °C. In addition, (Y0.7Yb0.3)3Al5O12 ceramic remained good phase stability when heating from room temperature to 1450 °C.  相似文献   

9.
The point defects and the structural and dielectric properties of Dy-doped BaTiO3 ceramics prepared at 1400 °C were investigated. The solubility of Dy in the self-compensation mode was determined to be x = 0.07 for (Ba1−xDyx)(Ti1−xDyx)O3, and no EPR signals associated with the Dy3+ Kramers ion or the Ba and Ti vacancies were detected using the electron paramagnetic resonance (EPR) technique. As x increases, the dielectric behavior changed from a first-order phase transition to a diffuse phase transition to a Y7R dielectric-temperature stability. A strong EPR signal at g = 1.974, which is rare among rare-earth-doped BaTiO3 ceramics appeared unexpectedly in the single-phase (Ba1−xDyx)Ti1−x/4O3 ceramics with deliberately designed Ti vacancies. This signal was attributed to ionized Ba vacancy defects. A preference for the self-compensation mode of Dy3+ ions is responsible for the appearance of Ba vacancies. The real formula of the nominal (Ba1−xDyx)Ti1−x/4O3 is expressed as (Ba1−xDy3x/4)(Ti1−x/4Dyx/4)O3. In addition, the defect chemistry is discussed.  相似文献   

10.
《Ceramics International》2016,42(9):10758-10763
Large size Ba4.2Nd9.2Ti18O54 (BNT) ceramics doped with MnCO3, CuO and CoO were prepared by the conventional solid-state method. Only a single BaNd2Ti4O12 phase was formed in all samples. No second phase was found in the XRD patterns. The bulk density increases slightly because of the dopants. The SEM results showed that the grain size of Mn2+and Cu2+-doped BNT ceramics became larger with the increasing amount of dopants. The permittivity of all samples stays the same. However, the Q×f value of BNT ceramics increases by doping, especially with Mn2+ ions. The conductivity of BNT ceramic doped with Mn2+(0.5 mol‰) under high temperature is lower than that without doping. There are fewer defects in Mn2+-doped BNT ceramics. The XPS results indicated that Ti reduction was suppressed in BNT ceramics doped with 0.5 mol‰ Mn2+. BNT ceramics doped with 0.5 mol‰ Mn2+ ions sintered at 1320 °C for 2 h exhibited good microwave dielectric properties, with εr=88.67, Q×f=7408 GHz and τf = 82.98 ppm/°C.  相似文献   

11.
The (micro)structural and electrical properties of undoped and Er3+-doped BaTi0.85Zr0.15O3 ceramics were studied in this work for both nominal Ba2+ and Ti4+ substitution formulations. The ceramics were produced from solid-state reaction and sintered at 1400 °C for 3 h. For those materials prepared following the donor-type nominal Ba1?xErx(Ti0.85Zr0.15)O3 composition, especially, Er3+ however showed a preferential substitution for the (Ti,Zr)4+ lattice sites. This allowed synthesis of a finally acceptor-like, highly resistive Ba(Ti,Zr,Er)O3?δ-like system, with a solubility limit below but close to 3 cat.% Er3+. The overall phase development is discussed in terms of the amphoteric nature of Er3+, and appears to mainly or, at least, partially also involve a minimization of stress effects from the ion size mismatch between the dopant and host cations. Further results presented here include a comparative analysis of the behavior of the materials’ grain size, electrical properties and nature of the ferroelectric-to-paraelectric phase transition upon variation of the formulation and Er3+ content.  相似文献   

12.
《Ceramics International》2017,43(15):11699-11709
The (1 − x)Pb(Zr0.70Ti0.30)O3xBiMn2O5 ceramics (PZT-BM), where x = 0, 0.02, 0.055, 0.11, 0.15, 0.22 and 1, were studied. We determined how addition of nonpolar BM influenced electrical properties of the ferroelectric PZT ceramics. Impedance spectroscopy measurements in broad frequency and temperature ranges were performed and several contributions to impedance response were identified. A crossover to the relaxor state was observed in the PZT-BM ceramics by doping with Bi and Mn ions. The relaxation times for the electric conductivity relaxation and dipole relaxation were estimated from electric modulus representation of the data. Activation energy values of the conductivity process, estimated for T > 510 K, decreased from 0.82 to 0.37 eV when BM content increased. The occurrence of the high-frequency dipole relaxation was assigned to the charge transfer of Ti3+/Ti4+, Zr3+/Zr4+ and Mn3+/Mn4+ ions. Occurrence of the ferroelectric relaxor features were deduced from the non-Arrhenius dependence of the relaxation times. Superposition of the relaxor features and electric relaxations provides high value permittivity (ε′ > 1000) in wide temperature range (~ 250–573 K). This effect corresponds to the disorder and precipitation of ions that were shown using x-ray photoelectron spectroscopy and the time of flight–secondary ion mass spectrometry.  相似文献   

13.
Bi4?xLaxTi3O12 (BLT) ceramics were prepared and studied in this work in terms of La3+-modified microstructure and phase development as well as electrical response. According to the results processed from X-ray diffraction and electrical measurements, the solubility limit (xL) of La3+ into the Bi4Ti3O12 (BIT) matrix was here found to locate slightly above x = 1.5. Further, La3+ had the effect of reducing the material grain size, while changing its morphology from the plate-like form, typical of BIT ceramics, to a spherical-like one. The electrical results presented and discussed here also include the behavior of the temperature of the ferroelectric–paraelectric phase transition as well as the normal or diffuse and/or relaxor nature of this transition depending on the La3+ content.  相似文献   

14.
Yttrium aluminum garnet (Yb3+:Y3Al5O12) laser ceramics doped by 5, 10 and 15 at% of ytterbium ions were obtained by reactive sintering. Optimal sintering temperature range for the formation of highly-dense transparent Yb3+:Y3Al5O12 ceramics under normal recrystallization conditions was found to be T = 1750–1800 °C. The influence of Yb3+ ions on structural-phase state, phase composition, microstructure, optical and luminescent properties of sintered samples was experimentally investigated. It was shown that lattice parameter a of Yb3+:Y3Al5O12 ceramics decreases linearly with increasing of Yb3+ concentration in a good agreement with L. Vegard’s rule, that indicates to the formation of (Y1−xYbx)3Al5O12 = 0.05–0.15) substitutional solid solutions. No concentration quenching of Yb3+ luminescence was observed in Yb3+:Y3Al5O12 within the 5–15 at% doping range. Quasi-CW lasing of Yb3+:Y3Al5O12 ceramics was studied under diode-pumping at 970 nm. A highest slope efficiency of about 50% was obtained for 15 at%-doped Yb3+:Y3Al5O12 ceramics sintered at T = 1800 °C for 10 h.  相似文献   

15.
《Ceramics International》2017,43(12):9099-9104
Y3+ and Fe3+ co-doped BaZr0.13Ti1.46O3 powders were synthesized by wet chemical method through a precipitation process, able to control uniformity and particle size of the BaZr0.13Ti1.46O3-based particles. Fine-grained BaZr0.13Ti1.46O3 ceramics co-doped with various amounts of Y3+ and Fe3+ were prepared at low sintering temperature to yield good dielectric properties and gentle temperature stability. The co-doping effect on the microstructure and dielectric properties of BaZr0.13Ti1.46O3 ceramics were studied. Results showed the dielectric constants firstly to increase monotonically then decrease with the increase of Y3+ and Fe3+concentration. Overall, the resulting ceramics met the X8R specification when Y3+ and Fe3+ contents were 2 or 4 mol%. Moreover, the increase in Y3+ and Fe3+ doping concentration from 6 to 8 mol% satisfied the X7R specification.  相似文献   

16.
《Ceramics International》2016,42(8):9935-9939
Bi2/3Cu3Ti4O12 (BCTO) ceramics with pure perovskite phase were successfully prepared by traditional solid-state reaction technique. Uniformly distributed and dense grains with the grain size of 2–3 μm were observed by SEM. A giant low-frequency dielectric permittivity of ~3.3×105 was obtained. The analysis of complex impedance revealed that Bi2/3Cu3Ti4O12 ceramics are electrically heterogeneous. There are three kinds of dielectric response detected in Bi2/3Cu3Ti4O12 ceramics, which existed in the low-frequency range, middle-frequency range, and high-frequency range, respectively. Through the study of dielectric spectrum at different temperatures, the relatively low activation energy of 0.30 eV for middle-frequency dielectric response was calculated, which suggested that this Middle-frequency dielectric response can be ascribed to grain boundaries response. In view of the analysis of dielectric spectrum at low temperatures, the activation energy of 0.07 eV for high frequency dielectric response was found. This value illustrated that dielectric response at high frequencies was associated with grains polarization effect. The comparison of dielectric spectra of Bi2/3Cu3Ti4O12 ceramics with different types of electrodes revealed that giant low-frequency dielectric constant was attributed to the electrode polarization effect.  相似文献   

17.
In this work, Gd3+ was selected to partially substitute the Y3+ in yttrium aluminum garnet (YAG) in order to improve the thermophysical properties of YAG. A series of (Y1-xGdx)3Al5O12 (x = 0, 0.1, 0.2, 0.3, 0.4) ceramics were synthesized through chemical co-precipitation route. The microstructure, thermophysical properties and elasticity modulus of (Y1-xGdx)3Al5O12 were investigated. The (Y1-xGdx)3Al5O12 ceramics was comprised of single garnet-type Y3Al5O12 phase. The thermal conductivities of (Y1-xGdx)3Al5O12 bulk samples decreased with increasing doping concentration to 0.2, but increased with furthering increasing the concentration to 0.4. The thermal conductivity of (Y0.8Gd0.2)3Al5O12 was 1.51 W m−1 K−1 at 1200 °C. The average thermal expansion coefficient of (Y0.8Gd0.2)3Al5O12 was slightly larger than that of Y3Al5O12. (Y0.8Gd0.2)3Al5O12 bulk sample exhibited the lowest elasticity modulus among the investigated (Y1-xGdx)3Al5O12. In addition, (Y0.8Gd0.2)3Al5O12 ceramic remained good phase stability from room temperature to 1600 °C.  相似文献   

18.
LiCuNb3O9 ceramics with the distorted cubic perovskite structure were prepared by a solid-state reaction method. The ceramic exhibited a very large value of permittivity (∼4.4 × 104 at 100 kHz) at room temperature (∼300 K) and a low-temperature dielectric relaxation behaviour following the Arrhenius law. The origin of the giant dielectric response of the LiCuNb3O9 ceramics was correlated with the structure of the ceramics. The barrier layers in the grain boundaries and the mixed-valent structure of Cu+/Cu2+ were found to contribute to the giant permittivity of the ceramics and confirmed by X-ray spectroscopy and complex impedance spectroscopy analyses.  相似文献   

19.
《Ceramics International》2016,42(13):14749-14753
Sm2(Zr1–xTix)2O7 (0≤x≤0.15) ceramics have been fabricated by pressureless-sintering method at 1973 K for 10 h in air. The influence of TiO2 doping on microstructure and thermo-optical properties of Sm2(Zr1–xTix)2O7 ceramics is investigated by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy measurements. The partial substitution of Ti4+ for Zr4+ results in a significant increase in emissivity at low wavelengths contrasted with undoped Sm2Zr2O7. Sm2(Zr0.85Ti0.15)2O7 ceramic exhibits a high emissivity of above 0.70 at 1073 K in a wavelength range of 3–16 µm, where the highest value at this temperature is more than 0.90 especially in the wavelength range of 9–14 µm. FT-IR spectra and optical absorption spectra unveil the mechanisms of enhanced emissivity in Sm2(Zr1–xTix)2O7 (0.05≤x≤0.15) ceramics in the intermediate infrared range, especially at the wavelengths of 3–8 µm, due to Ti4+ ion substitution for Zr4+ ion.  相似文献   

20.
《Ceramics International》2022,48(11):15405-15413
In this work, Y2/3Cu3Ti4O12 ceramics were fabricated via a modified sol?gel route. Structural, dielectric, and electrical parameters were systematically investigated. The XRD results indicate that a CaCu3Ti4O12 phase (JCPDS No. 75–2188) is present in every sintered sample. SEM images of Y2/3Cu3Ti4O12 ceramics disclose a fine-grained ceramic microstructure. Interestingly, high dielectric permittivity, ~6600–7600, with loss tangents of ~0.918–1.086 were achieved in the sintered Y2/3Cu3Ti4O12 samples. Density functional theory (DFT) calculations were used to investigate the most stable structure of the Y2/3Cu3Ti4O12 ceramics. Our DFT results reveal that two calcium vacancies (VCa) are isolated from each other. We also determined the lowest energy configuration of an oxygen vacancy (VO) in the Y2/3Cu3Ti4O12 ceramics occurred during the sintering process. We found that the VO is trapped close to the Y atom in this structure. Both computational and experimental studies specify that the oxygen vacancy is located close to the Y atom in the Y2/3Cu3Ti4O12 lattice and it might be a bivalent oxygen vacancy. As a result, due to charge balance, charge compensation of the transition ions, i.e., Cu and Ti ions, might take place. The charge compensation mechanisms in the Y2/3Cu3Ti4O12 lattice were verified using an XPS technique. Impedance spectroscopy confirms the presence of an inhomogeneous microstructure consisting of semiconducting grains and insulating grain boundaries in the sintered Y2/3Cu3Ti4O12 ceramics. This electrical result is consistent with the computational analysis, showing that a charge compensation mechanism might be involved in generation of the grains' semiconductive region due to the presence of a VO. Consequently, high dielectric permittivity in Y2/3Cu3Ti4O12 may have originated from an internal barrier layer capacitor (IBLC) effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号