首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
针对时栅角位移传感器定子和转子的加工误差对测量精度的影响,利用多测头法分离出多次谐波成分并加以修正.根据场式时栅角位移传感器的误差特点,针对32对极场式时栅进行了理论分析,分离并消除64次及64的整数倍次以外的谐波分量.定子和转子线槽的分度误差被修正以后,时栅角位移传感器测量精度达到了2′的预定指标.  相似文献   

2.
针对高精度位移传感器难以加工的难题,提出一种基于离散绕组的磁场式时栅位移传感器。通过设计离散激励绕组排布方式与感应绕组的形状控制感应位移信号的变化规律,通过组合测量方式实现精密位移测量。通过理论建模、仿真分析与实验验证揭示了激励信号误差和安装偏差对传感器测量精度的影响规律。实验结果表明:两路激励信号的幅值不等和安装偏差都会在对极内测量精度中直接引入直流分量误差和2次谐波误差,其中2次谐波误差是误差的主要成分。安装偏差越大,2次谐波误差越大,动尺沿Z轴偏摆姿态对测量精度的影响最大,沿Y轴翻转姿态引入的误差次之,沿X轴俯仰姿态引入的误差最小。误差修正后传感器在144 mm的测量范围内,测量误差峰峰值为4.5μm,分辨力为0.15μm。通过毫米级尺寸的激励和感应绕组实现微米级精度测量,可显著降低传感器的制造难度,具有重要的工程应用价值。  相似文献   

3.
基于正弦函数和快速傅里叶变换提出了一种误差补偿及参数辨识方法,用于提高时栅角位移传感器的测量精度和标定效率。使用激光干涉仪对时栅角位移传感器的误差进行标定,在整周采样36个对极点和对极内采样240个点。通过对标定的误差数据进行分析,由此提出一种基于傅里叶级数变换的误差补偿模型,在对极点对8个参数与对极内20个参数分别进行参数辨识。实验结果表明:补偿后时栅角位移传感器的测量误差减小为原误差的1/38.4,显著地提高传感器的测量精度和标定的效率。  相似文献   

4.
基于平面时栅传感器原理提出了多读数头平面时栅传感器。利用耦合面积原理分析传感器正方形与正弦形状定子槽形状与激励耦合的谐波特性,对比不同耦合形状对各次谐波的削弱效果,选择最优的耦合形状构建传感器模型。设计了传感器信号处理模型,对感应信号进行解算得到测量角度。设计了对误差补偿模型测量结果进行修正,提高了传感器的测量精度,通过与原始数据的比较误差补偿后,测量精度显著提高。  相似文献   

5.
回转精度是衡量超精密主轴的关键技术指标。传统的回转精度测试方法存在不足,如单点法和2点法不能实现误差分离;多步法需要进行多次精确转位,不利于在线测量;传统3点法可实现误差分离,但存在原理误差,不能分离主轴回转误差中的一次成分等。文中提出了一种工程测试3点法,该方法采用3个传感器在被测件上严格定点采样;利用3点法圆度误差分离技术分离出被测件圆度误差,利用2点法偏心误差分离技术分离出测试系统偏心误差;从实时采样数据中剔除被测件圆度误差及偏心误差,实现主轴回转误差在线测量及状态监测。揭示了单周采样点数、传感器安装角、偏心误差、传感器误差及角位置误差等因素对3点法测试精度的影响规律,对工程测试3点法的参数选择及形状失真进行了综合分析和优化。试验结果表明:文中所提方法有效。  相似文献   

6.
针对传统的大尺寸栅式角位移传感器在实现绝对定位的同时难以兼顾高精度测量的问题,在前期研究基础上设计了基于交变电场的大尺寸绝对式角位移传感器。传感器利用单列式传感结构实现高精度测量,设计内、外圈两圈结构在整周内刚好相差一对极以实现绝对定位。研制的传感器样机内径为100 mm、外径为154 mm,经实验测试并分析,其对极内呈现的二次谐波误差是由传感器不圆度所导致,四次谐波误差是因传感器结构缝宽比设计不合理而形成。为此,通过加长定尺极片、缩短动尺极片以削弱二次谐波误差,并设计缝宽比为1∶1以减小四次误差。优化后的传感器整周测量精度达到5″,对极内测量精度达到±1.5″。  相似文献   

7.
《工具技术》2017,(11):121-126
目前栅式位移传感器主要有光栅、容栅、球栅、感应同步器、旋转变压器、时栅等,提高其精度一般通过增加栅线密度和读数头数量来实现,或者依靠高精度母仪来检测和修正误差,但是这种方式对传感器的加工和安装要求高,或者传感器精度长时间保持性差。本文针对上述问题,提出了基于等差相位构建正交信号、实现多读数头测量、误差特征参数自辨识和误差自修正的新方法,该方法不增加加工和安装难度,定子和转子的槽数接近,多读数头有机集成在同一个定子,使读数头的一致性好。实验结果表明:基于等差相位构建多读数头误差成分少,通过多读数头误差特征参数自辨识和误差自修正后,传感器的误差可达到±1.9″。  相似文献   

8.
大型望远镜测角系统误差的修正   总被引:1,自引:0,他引:1  
王显军 《光学精密工程》2015,23(9):2446-2451
由于大型望远镜转台轴系对测角精度要求较高,本文研究了测角数据系统的误差修正技术。分析了测角数据误差产生的原因,对测角元件误差、安装误差、被测轴系误差进行了讨论,指出轴系测角分系统的误差规律符合谐波方程,故提出采用谐波方程式来表达误差规律。针对工程应用,建立了基于傅里叶级数的简化谐波方程误差公式,用谐波方程算法和多项式拟合算法对系统误差进行修正。在一个望远镜垂直轴转台进行了试验验证,结果显示测角精度峰值由原来的3.81″提高到了1.06″。实验表明,基于傅里叶级数的修正算法,较好地符合误差分布规律;采用系统误差修正技术,可以对系统综合误差统一修正,能够有效提高系统测角精度。  相似文献   

9.
针对研制时栅位移传感器过程中的误差标定环节,常规光栅传感器精度不满足要求的问题,采用激光干涉仪作为误差标定基准,自主研制了基于激光干涉仪的直驱式时栅角位移传感器误差自动标定与修正系统。利用时栅角位移传感器的多测头结构与误差曲线等间距周期性分布的特性,以一个对极的误差曲线重构传感器整周的误差曲线,采用多项式拟合算法构建了时栅角位移传感器的误差修正模型。实验结果表明,误差自动标定与修正系统可以快速、准确地对时栅角位移传感器进行自动误差标定与修正,修正后的时栅角位移传感器的整周误差达到±0.43″。  相似文献   

10.
针对现有时栅位移传感器误差补偿模型补偿效果受标定实验台速度影响的问题,提出了一种基于三次样条插值-傅里 叶谐波合成的误差补偿模型。 首先,根据时栅位移传感器多测头信号感应原理与整周误差曲线等间距周期性分布特性,分析短 周期误差受标定实验台速度影响,引入传感器等间距采样的“错位”误差,该误差将直接影响构建的短周期误差补偿模型的补 偿效果;其次,利用三次样条插值法准确定位误差采样位置,精确重构短周期误差曲线;最后,通过重构的短周期误差曲线与傅 里叶谐波补偿法建立了短周期误差补偿模型,提高了时栅位移传感器误差补偿效果。 实验结果表明,采用本补偿模型后传感器 短周期误差峰峰值降至 1. 7″;本补偿模型短周期误差补偿效果优于传统基于傅里叶谐波补偿法构建的补偿模型,标定实验台速 度为 3 r/ min 时补偿效果可提高 56. 0% ,既能满足传感器动态标定的工作效率,也能满足传感器的高精度误差标定需求。  相似文献   

11.
为了降低预补偿计量装置的误差,提升电能计量精度,提出了谐波干扰下数字化高压电能计量装置误差预补偿方法。分析谐波干扰下计量装置的误差,并计算谐波干扰下标准采样频率时的功率值;利用过零检测算法计算实际采样频率,获取实际采样频率时的功率值,标准采样频率时的功率值与实际采样频率时的功率值之差即为预补偿功率值,实现电能计量装置误差预补偿。实验结果表明:该方法可精准计算不同谐波次数时电能计量装置的三相功率误差;该方法补偿后的功率值与功率理论值差距较小,具备较优的功率误差预补偿效果;应用该方法后的计量装置报表数据记录精度更高。  相似文献   

12.
在时栅位移传感器的研制开发过程中,为了用低精度的机械加工实现高精度的测量,提出了一种对传感器误差进行修正和补偿的方法——谐波修正法。该方法和FFT方法不同之处在于:它不是用于对测量结果事后的分析,而是用于传感器设计之前和制造之中。实践证明,此方法使用后使传感器精度得以大幅度提高,具有广泛的应用前景。  相似文献   

13.
时栅动态测量误差建模与补偿技术研究   总被引:2,自引:0,他引:2  
为提高时栅传感器动态测量精度,针对时栅的误差特点,提出对动态测量误差的周期性成分和随机性成分分别建模的思想。采用傅里叶级数逼近的方法对误差中的周期性成分进行建模,利用最小二乘方法对逼近模型参数进行寻优,选取比重较大的谐波参数对误差的周期性成分进行分离,对于分离后残留的随机性成分采用支持向量回归(Support vector regression,SVR)模型进行预测,利用交叉验证的方法对回归预测模型进行参数寻优和细化,选取最优的核函数参数g和惩罚因子C,使得残差均方达到最小。研发误差补偿系统,对时栅动态测量误差进行补偿。试验结果表明,运用该建模方法和模型,时栅传感器动态测量误差的峰峰值由38.2″降至3″,有效地降低了测量误差,大幅度提高了传感器的测量精度。  相似文献   

14.
为提高交叉杆式Stewart型并联机床的加工精度,提出了一种基于误差拟合曲线对刀轨进行修正的补偿方法。在并联机床工作空间内不同高度位置上加工一系列不同直径的圆柱面,测量结果显示,所有圆柱面的投影轮廓均呈现为椭圆形状,且轮廓中心相对于理想圆心位置均沿近似一致的方向发生偏移从而处于第三象限内。针对实际加工中表现出的上述误差的一致性,提出拟合求差补偿方法。首先对加工获得的圆柱面进行离线采样测量,获得若干实际圆周轮廓点及其相对于理想轮廓点的误差;然后对上述采样点的误差进行拟合操作,获得完整轮廓的误差拟合曲线;最后基于该曲线对加工程序进行修正,从而提高加工精度。对阶梯圆柱面的补偿试验结果表明,该方法可有效降低圆柱面表现为椭圆柱面的程度,同时有效降低了圆柱面中心向第三象限的偏移程度,有效提高了并联机床的加工精度。  相似文献   

15.
关节臂式坐标测量机角度传感器偏心参数辨识   总被引:6,自引:1,他引:5  
对关节臂式坐标测量机中圆光栅角度传感器分度盘安装存在的偏心误差进行修正,可以有效提高测量机的测量精度。为了实现坐标测量机动态、实时的现场标校,建立了一种六自由度关节臂式坐标测量机的坐标系统,分析了圆光栅分度盘的安装偏心对角度测量的影响,推导了由于偏心引起的测量误差及其修正公式。分析表明,较小的安装偏心便会引起较大的角度测量偏差。以测量机的单点重复测量精度为目标函数,提出了一种基于模拟退火算法的角度传感器偏心参数辨识方法,并将其用于测量机关节圆光栅12个偏心参数的辨识和修正,实验结果表明,修正之后测量机的重复测量精度提高了11.3%。  相似文献   

16.
利用误差谐波补偿法提高金属圆光栅测角精度   总被引:1,自引:0,他引:1  
提高圆光栅测角精度的方法除了提高分辨率和系统精度以外,广泛采用误差补偿方法。本文通过对新型金属圆光栅的研究,提出了一种基于软件的误差补偿方法——误差谐波补偿法。实验表明该方法可消除一定阶次内幅值和初相位不随时间变化的误差谐波,有效提高测角精度。  相似文献   

17.
不同构型下各种动态因素的影响使得多关节测量系统在不同位置、构型下的精度呈现一定的规律。掌握由各种动态因素综合引起的单点精度规律,有利于提高多关节测量系统的标定和测量效果。以六关节测量臂为研究对象,分析了测量臂构型对末端执行器位置误差影响的周期性特性,构建了一套构型关键参数(θ3,θ4,θlen)与末端执行器位置在柱坐标系下残差(Δs,Δh,Δz)之间的多项式残差修正方法。验证实验包括1)采用本文方法在不同位置下对测量臂进行多构型单点测量,获得测量臂在径向方向上的残差分布图谱,并以此结果拟合计算周期性多项式系数;2)与非周期性多项式修正方法进行单点、长度及形位公差精度对比测试。实验结果表明,本方法能更方便、快速地提高多关节测量系统单点、长度及形位公差精度,相比非周期性多项式修正方法,本方法精度更高,对多关节测量臂精度补偿具有一定参考意义。  相似文献   

18.
提出了一种基于LabVIEW的传感器误差修正和补偿的方法,将其应用于时栅位移传感器研究,在Lab-VIEW环境中实现了时栅位移传感器测量的误差曲线分析和拟合算法,提高了传感器精度。  相似文献   

19.
一、问题的提出轴系回转精度的测量通常有3种方法:基准件单点测量,多方位误差分离技术和多传感器误差分离技术。其中的3传感器技术,可以将轴系回转误差运动从包含有基准件形状误差的总的测量信号中分离出来,并避免了多方位技术要求多次装卡基准件,要求误差运动重  相似文献   

20.
动态测量下的谐波误差成分是制约高精度、高分辨率的时栅角位移传感器在动态测量领域运用的主要原因之一。针对动态测量下时栅角位移传感器中的谐波抑制难题,首先简述了时栅角位移传感器的系统模型,其次建立了时栅角位移传感器的动态误差数学模型,之后解释了传感器的动态误差产生机理,阐述了自适应卡尔曼滤波的基本原理,最后构建了基于自适应卡尔曼滤波的时栅角位移传感器的动态误差抑制模型。通过仿真分析证明了时栅角位移传感器在匀速和变速运行情况下,经自适应卡尔曼滤波后,动态误差均降低了约70%,且随着传感器转速的提高,对谐波误差的抑制效果越明显。在实验运用中,该滤波算法对时栅角位移传感器的测量值有很好的实时预测性,传感器能够更快速且稳定运行,在100 r/min的转速下测量误差降低约80%。结果证实了自适应卡尔曼滤波在时栅角位移传感器的动态谐波误差抑制中有着显著的作用,能极大地提高传感器的动态测量精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号