首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 848 毫秒
1.
为充分利用牡丹籽粕中的多酚资源,采用响应面法优化超临界CO_2萃取牡丹籽粕多酚工艺,以多酚提取量为响应值,得到了乙醇(夹带剂)体积分数、萃取温度和萃取压力的最优条件;通过测定牡丹籽粕多酚对DPPH和ABTS自由基的清除能力,对其抗氧化活性进行评价。结果表明,超临界CO_2萃取最佳工艺条件为乙醇体积分数83%、萃取温度52℃、萃取压力32 MPa,此条件下牡丹籽粕多酚提取量可达18.58 mg/g;牡丹籽粕多酚和VC对DPPH·清除率的IC_(50)分别为128.22μg/mL和147.72μg/mL,对ABTS~+·清除率的IC_(50)分别为109.18μg/mL和142.66μg/mL,牡丹籽粕多酚对DPPH·和ABTS~+·的清除能力均显著强于VC。  相似文献   

2.
目的:为拓展石榴籽开发用途,了解其多酚粗提物和纯化物的体外抗氧化活性作用强弱。方法:本实验采用有机溶剂浸提法提取石榴籽中的多酚物质并以有机溶剂萃取法进行纯化,采用ABTS法、邻苯三酚自氧化法、Fenton法和DPPH法测定了石榴籽粗提液及纯化液对ABTS自由基、羟基自由基、超氧阴离子和DPPH自由基的清除能力。结果表明,石榴籽中的多酚粗提液和纯化液对ABTS、DPPH自由基均有较强的清除能力,而对超氧阴离子自由基和羟基自由基的清除能力较弱;多酚粗提液清除ABTS、DPPH自由基的IC50值分别为37.13 191.82 μg/mL,多酚纯化液清除ABTS、DPPH自由基的IC50值分别为29.11、143.26 μg/mL;纯化液对ABTS自由基、羟基自由基及DPPH自由基的清除能力强于粗提液。  相似文献   

3.
以白、黄、红、黑等4种藜麦为材料,采用福林酚法、亚硝酸钠-硝酸铝法进行总多酚、总黄酮含量测定,以清除DPPH·、ABTS+2种自由基的能力为评价指标,进行抗氧化活性测定。结果表明,4种藜麦的总多酚和总黄酮含量存在一定差异,分别为(1.6374±0.0047)~(2.8776±0.0699)mg/g和(4.4480±0.0646)~(10.3109±0.1131)mg/g。黑藜麦的总多酚和总黄酮含量均最高。4种藜麦醇提物对DPPH·自由基清除能力最强的为红藜麦(EC50=6.5440mg/mL),最弱的为黄藜麦(EC50=15.242 8 mg/mL)。只有红藜麦和黑藜麦醇提物均对ABTS+自由基有一定的清除效果,其EC50分别为42.0292mg/mL、49.2832mg/mL。4种藜麦均含有一定量的总多酚和总黄酮,红藜麦和黑藜麦的抗氧化效果较好。  相似文献   

4.
为筛选适宜的芒果核仁多酚提取方法,分别采用超声辅助提取法和热回流提取法制备芒果核仁多酚,在单因素试验的基础上,通过响应面法优化两种方法的工艺参数,探究提取方法对多酚得率的影响;利用清除1,1-二苯基-2-苦肼自由基(DPPH·)、2,2-联氨-双-3-乙基苯并噻唑啉-6-磺酸二铵盐阳离子自由基(ABTS+·)、超氧阴离子(O2-·)和羟自由基(·OH)的能力评价所得粗多酚的抗氧化活性。结果表明,超声辅助提取法的芒果核仁多酚提取得率较高,其最佳提取溶液为60%乙醇,其最佳工艺为超声时间30 min,超声功率200 W,超声温度79℃,液料比38∶1(mL/g),该条件下多酚提取得率为11.62%;体外抗氧化试验表明,超声辅助提取法所得芒果核仁多酚对DPPH·、ABTS+·、O2-·和·OH的半清除浓度(IC50)分别为0.02、0.24、592.98 mg/mL和38.76 mg/mL,清除能力均强于热回流提取法所得芒果核仁多酚;此外,超声辅助提取法具有省时和成本低的特点。  相似文献   

5.
腰果叶多酚超声波辅助提取工艺及其抗氧化能力测定   总被引:1,自引:0,他引:1  
以腰果叶为原料,采用超声波辅助手段对腰果叶多酚进行提取。在单因素试验基础上,通过响应面法优化腰果叶多酚提取工艺条件。1.0 g腰果叶粉末,所得到最优提取工艺条件为:丙酮体积分数60%、提取温度60℃、提取时间90 min,实测得率为10.29%,接近预测值10.33%。通过腰果叶多酚提取物对DPPH自由基清除能力,ABTS+自由基清除能力,铁离子还原能力,得出腰果叶多酚提取物具有抗氧化能力,相同浓度下腰果叶多酚提取物抗氧化性高于天然抗氧化剂VC。  相似文献   

6.
分别以水、70%甲醇、70%乙醇和70%丙酮为提取剂,超声辅助提取金银花中多酚,采用Folin-Ciocalteu法测定提取液中多酚量,并利用清除DPPH·、·OH和ABTS+·法评价其抗氧化活性。结果表明,金银花不同溶剂水、70%甲醇、70%乙醇和70%丙酮提取物中多酚含量分别为18.97、46.56、46.63、48.49 mg/g,以水为溶剂与以有机溶液为溶剂,金银花多酚提取量有极显著差异(p<0.01)。不同溶剂金银花多酚均具有一定的清除DPPH·、·OH和ABTS+·能力,即抗氧化活性,但其清除DPPH·和ABTS+·的能力弱于2,6-二叔丁基-4-甲基苯酚(butylated hydroxytoluene,BHT),清除·OH的能力强于BHT。不同溶剂提取的金银花多酚种类不同,对自由基的清除能力不同。  相似文献   

7.
响应面法优化提取竹荪多糖的工艺研究   总被引:1,自引:0,他引:1  
以竹荪子实体为原料提取多糖,研究了提取时间、提取温度、料液比、pH对多糖得率的影响。在此基础上以提取温度、料液比、pH值为考察因素,以多糖得率为指标,采用响应面实验方法,确定了竹荪多糖提取的最优工艺条件为提取温度95℃、pH=2.0、料液比1:33。在此条件下,其多糖得率达到11.717%,实际测得多糖得率为11.698%。选取DPPH法和ABTS法评价对上述条件提取出的多糖的清除自由基的能力,DPPH法中,竹荪多糖的EC50为0.150mg/mL(Vc的EC50为0.011mg/mL),ABTS法中,竹荪多糖的EC50为0.909mg/mL(Vc的EC50为0.209mg/mL),竹荪多糖具有较好的抗氧化活性。  相似文献   

8.
优化了超声波辅助提取苦荞芽中多酚类物质的工艺条件,并采用ABTS和DPPH自由基清除率法检测了苦荞芽多酚提取物的抗氧化活性。研究结果表明,苦荞芽多酚的最佳提取条件为:甲醇体积分数60%、超声时间30 min、超声温度50℃、料液比1:50 g/mL,在该条件下苦荞芽多酚的提取量可达72.82 mg/g。抗氧化活性测定结果表明,苦荞芽多酚提取物对ABTS自由基和DPPH自由基均有较强的清除能力,其半抑制浓度(IC50)值分别为119.26、205.24μg/mL。  相似文献   

9.
该文选取液料比、提取温度、提取时间、超声功率4个因素,以多酚得率为指标,应用响应面设计对超声辅助水提鹿茸菇多酚工艺进行优化,同时对鹿茸菇多酚体外抗氧化活性进行探究。响应面设计结果显示鹿茸菇多酚最优提取工艺为液料比 76∶1(mL/g),超声功率 250 W,提取温度 60 ℃,提取时间 90 min,多酚得率为(16.591±0.173)mg/g。体外抗氧化活性测试结果显示鹿茸菇多酚总抗氧化能力EC50=0.123 mg/mL,对DPPH和ABTS+自由基均表现出较强的清除活性,IC50分别为0.303 mg/mL和0.008 3 mg/mL。该研究表明鹿茸菇多酚提取工艺可行,鹿茸菇多酚具有较强的抗氧化能力。  相似文献   

10.
以提取木瓜叶多酚并研究其抗氧化活性为目的。利用乙醇提取木瓜叶多酚,采用DPPH法、水杨酸法检测其对DPPH.和.OH的清除作用。结果表明,最佳提取条件为提取温度70℃、乙醇体积分数70%、提取时间2.5 h、料液比1∶15(m/V)。在该条件下木瓜叶多酚得率最高,达到18 mg/g。木瓜叶多酚清除DPPH.和.OH的半抑制质量浓度(EC50)分别为67μg/mL和0.44 mg/mL。结论为木瓜叶中含有丰富的多酚,并且其具有较强的抗氧化活性。  相似文献   

11.
采用乙醇加热法提取葡萄花旗松素,利用响应面分析法优化葡萄花旗松素的提取工艺并测定其最优组的抗氧化性能。结果表明:葡萄花旗松素的最佳提取工艺为静置处理时间为30 min、乙醇含量58%、提取温度56℃、液料比23:1 mL/g、提取时间2.0 h,最佳提取量为3.936 mg/g。以VC为参照测定提取液对ABTS自由基、DPPH自由基和铁离子还原力,其中葡萄花旗松素提取液对自由基清除能力及铁离子还原力均高于VC溶液,对DPPH自由基的清除效果最好,浓度为50 μg/mL的提取液对DPPH自由基的清除率可达到90%。此外,研究还表明花旗松素提取液对ABTS自由基、DPPH自由基的IC50值分别为28.15、22.65 μg/mL。本结果对于葡萄皮渣的开发利用具有一定的意义。  相似文献   

12.
为了研究鱼尾色素的抗氧化性,以提取率和DPPH自由基清除率为评价指标,采用溶剂浸提的方法对色素进行提取,利用DPPH法、ABTS法和铁氰化钾还原法对提取物进行抗氧化实验。结果表明,鱼尾色素抗氧化成分提取的较佳工艺为浸提溶剂无水乙醇、温度20℃、料液比(g/mL)1:5、时间24h、浸提1次;此时色素提取物的提取率达2.40%,DPPH自由基清除率为58.44%。抗氧化性实验表明,鱼尾色素提取物具有较强的清除DPPH自由基和ABTS+自由基能力,其IC50值为0.3891mg/mL和1.8654mg/mL。  相似文献   

13.
以构树根皮为原料,通过单因素实验考察不同因素对构树根皮总黄酮和多酚提取量的影响。运用DesignExpert 11软件设计响应面法优化构树根皮乙醇回流提取工艺,并进行工艺验证。最后对提取得到的构树根皮乙醇提取物进行DPPH·、ABTS+·、羟自由基清除能力和总还原能力的测定,评价其抗氧化活性。响应面分析表明,构树根皮总黄酮和多酚的最佳提取工艺为提取温度75℃、提取时间117 min、料液比1:16 g/mL、乙醇浓度70%。此条件下,构树根皮总黄酮和多酚提取量分别为23.93±0.30 mg/g和14.69±0.56 mg/g,与预测理论值接近。抗氧化实验表明,构树根皮乙醇提取物对DPPH·、ABTS+·和羟自由基的半数清除浓度(IC50)分别为5.256μg/mL、0.259 mg/mL和0.310 mg/mL,且清除能力与其浓度呈现一定的量效关系。当提取物浓度为1.0 mg/mL时,总还原能力达到1.484±0.062。此优化实验有效可行,构树根皮乙醇提取物具有较强的抗氧化活性。本研究为构树资源的综合利用提供了一定的理论依据。  相似文献   

14.
采用DPPH·法及Fe3+ 还原力法对蛇菰提取物的抗氧化活性进行研究,分别测定蛇菰乙醇提物、石油醚提取物、氯仿提取物、乙酸乙酯提取物、正丁醇提取物、水层部分、水提粗多糖及碱提粗多糖的抗氧化作用,同时以VC 作为阳性对照。结果表明:蛇菰提取物具有较强的抗氧化活性,尤其是乙酸乙酯提取物、正丁醇提取物、总醇提取物及水提粗多糖;它们对DPPH·的清除作用与VC 相当,其中乙酸乙酯提取物IC50 值为6.0μg/mL,活性略高于VC,同时以上提取物对Fe3+ 也具有很强的还原能力。  相似文献   

15.
以木瓜皮为原料,研究了木瓜皮多酚和黄酮的提取工艺及抗氧化、酪氨酸酶和胰脂肪酶抑制活性。在单因素实验基础上采用正交试验研究超声温度、超声时间、乙醇浓度、料液比对木瓜皮多酚和黄酮含量的影响,并测定木瓜皮对DPPH自由基和ABTS自由基的清除能力以及对酪氨酸酶和胰脂肪酶的抑制活性。结果表明,木瓜皮多酚和黄酮的最佳提取条件为:超声温度40 ℃,超声时间60 min,乙醇浓度60%,料液比1:25 g/mL,在此条件下多酚和黄酮含量分别为(82.00±0.65)mg/g和(162.76±2.82)mg/g。抗氧化活性实验结果表明,木瓜皮提取物对DPPH自由基和ABTS自由基的清除率分别为(94.79%±0.10%)和(96.94%±0.23%)。抑制酶活性实验结果表明,木瓜皮提取物对分别以L-Tyr和L-Dopa为底物的酪氨酸酶的抑制率为(83.33%±6.80%)和(67.12%±0.32%),对胰脂肪酶的抑制率为(82.78%±1.28%),说明木瓜皮具有较强的抗氧化能力、酪氨酸酶及胰脂肪酶抑制活性。  相似文献   

16.
为研究红毛藻多酚提取工艺及其抗氧化活性,采用溶剂浸提法提取多酚,选取提取时间、提取温度、乙醇体积分数、料液比为单因素,进一步通过正交试验优化确定最佳提取工艺。以DPPH和ABTS自由基清除率为指标,评价红毛藻多酚的抗氧化活性。结果显示,红毛藻多酚的最佳提取工艺为:浸提温度70 ℃,浸提时间70 min,乙醇体积分数60%,料液比1:10 g/mL,此条件下多酚提取量为(9.67 ± 0.14)mg/g。抗氧化活性评价显示,红毛藻多酚对DPPH和ABTS自由基有一定的清除能力,其IC50值分别为0.313、0.445 mg/mL。研究结果表明正交优化提取红毛藻多酚的工艺简单可行,此方法提取多酚具有较强的抗氧化活性。红毛藻多酚具有开发为天然抗氧化剂的潜力,有较好的应用前景。  相似文献   

17.
本实验以白刺果为原料,采用单因素结合响应面法对微波超声协同提取白刺果原花青素工艺进行优化,并以DPPH自由基清除率、ABTS自由基清除率、羟自由基和总还原能力评价其抗氧化活性。结果表明,乙醇浓度、液料比、微波时间和超声温度对白刺果原花青素得率的影响明显,优化后的工艺条件为乙醇浓度65%,液料比14.5 mL/g,微波时间2 min,超声温度50 ℃,白刺果原花青素得率平均值为(17.289±0.402)mg/g,与理论预测值相差2.4%,说明由该模型优化的最佳提取工艺条件稳定可靠,具有实际应用价值。利用大孔树脂对提取物进行纯化后的纯度达到81.4%。体外抗氧化试验结果表明,白刺果原花青素不仅具有良好的还原能力,对ABTS自由基和DPPH自由基均具有较强的清除能力,IC50分别为0.261 mg/mL和0.159 mg/mL,对羟自由基也具有一定的清除能力,IC50为0.712 mg/mL。因此,微波超声协同能够明显地提高提取效率,且白刺果原花青素具有较强的体外抗氧化活性,为全方位利用白刺资源提供科学参考。  相似文献   

18.
响应面法优化结香花总黄酮提取工艺及其抗氧化活性   总被引:1,自引:0,他引:1  
采用响应面法优化结香花中总黄酮的提取工艺,评价其抗氧化活性。在单因素实验的基础上,以乙醇浓度、液料比、提取温度、提取时间为优化因素,总黄酮得率为评价指标,采用Box-Behnken法优化结香花总黄酮的提取工艺;利用DPPH和ABTS自由基清除实验检测结香花总黄酮的抗氧化能力。结果表明,结香花总黄酮的最佳提取工艺为乙醇浓度80%,液料比35:1,提取温度83℃,提取时间85 min,总黄酮得率22.76 mg·g-1。最佳工艺条件下得到的提取物具有一定的清除自由基能力,且与总黄酮含量呈明显的浓度依赖性,体外清除DPPH自由基和ABTS自由基的IC50值分别为0.75和0.98 mg·mL-1。  相似文献   

19.
目的:研究短瓣金莲花的抗氧化活性部位。方法:将短瓣金莲花药材依次用石油醚、乙酸乙酯、95%乙醇、60%乙醇、30%乙醇和去离子水提取,采用紫外-可见分光光度法对不同溶剂提取部位的黄色素、总黄酮和总酚含量进行分析,并测试各提取部位对羟自由基(•OH)和1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基的清除作用以对其抗氧化活性进行研究。结果:短瓣金莲花石油醚提取部位的黄色素含量最高,为(11.37±0.07 )mg/g;而60%乙醇提取部位总黄酮和总酚含量最高,分别为(213.21±1.12)mg/g和(121.75±0.58) mg/g,95%乙醇提取部位次之,分别为(200.47±0.65)mg/g和(105.19±0.61)mg/g。石油醚提取部位清除•OH能力最强,半抑制浓度(50% inhibiting concentration,IC50)为92.77 mg/L;95%乙醇提取部位清除DPPH自由基能力最强,IC50为10.14 mg/L,60%乙醇提取部位次之,IC50为10.70 mg/L。结论:短瓣金莲花清除•OH能力与黄色素含量呈正相关性,而清除DPPH自由基能力与黄酮和多酚含量呈正相关性;短瓣金莲花的石油醚和95%乙醇提取部位是最佳的抗氧化活性部位,有待进一步深入研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号