首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
采用紫外和微波发生器对实验室分离得到的1株石油降解菌Enterobacter sp.MX1进行紫外微波和微波紫外复合诱变。根据致死率曲线,在紫外照射功率15 W、时间3 min条件下得到突变菌株MXU2,并对其进行微波复合诱变30 s后筛选得到1株稳定高效石油烃降解菌株MXU2W2;微波照射50 s筛选得到MXW3,并对其紫外复合诱变4 min后筛选到1株稳定的高效石油烃降解菌MXW3U2。紫外微波MXU2W2和微波紫外MXW3U2这2珠菌降解石油烃7 d后,MXW3U2的对柴油体积分数1%的培养基降解率达到57.62%。正交实验确定微波紫外复合诱变的突变菌株MXW3U2优化生长条件为:温度30℃、pH为5、盐度4%、接种体积分数4%,在此条件下,菌株MXW3U2对柴油体积分数1%的培养基降解率达66.20%。  相似文献   

2.
研究通过逐渐提高培养液的盐浓度从含石油烃的钻井泥浆中驯化获得四株耐盐的石油烃降解菌,筛选出1株对原油降解效率高的优势菌株SW-1。经16S r RNA基因序列分析确定其系统发育地位,采用单因素实验研究环境因素对该菌原油降解率的影响,研究其对典型石油烃类物质的降解能力及降解特性。结果表明:石油烃降解菌耐受的盐度为9%;盐度为0时,菌株SW-1的原油降解率为51.49%; 16S r RNA基因序列比对结果显示,该菌株与Bacillus licheniformis MGB70112. 1核苷酸序列相似性为100%; p H值为9,温度为30℃降解效果最佳;在9%盐浓度,最佳条件下培养7 d,SW-1菌株对原油的降解率为33. 10%,对菲的降解率为46. 53%; GC-MS分析结果表明,菌株SW-1可以降解链长为C19~C28的烷烃,C19~C28烷烃的平均降解率达到18. 48%。  相似文献   

3.
本文采用亚硝酸盐诱变与温度驯化处理的复合诱变方法,对能够高效降解水中总氮的沼泽红假单胞菌出发菌株进行诱变处理,选育出能一株在低温条件下生长良好、性状稳定,且能够在低温条件下高效降解水中总氮的沼泽红假单胞菌驯化菌株。与出发菌株相比,驯化菌株在15℃时的生长以及总氮降解率均好于出发菌株,其对总氮降解率可达到69.08%,比出发菌株提高了43.49%。  相似文献   

4.
王卫强  崔静  吴尚书  李小玲  张海娟 《精细化工》2019,36(11):2317-2322
为提高含蜡原油流动性能,从辽河油田附近经受原油污染的土壤中筛选出两株原油降解菌。经过16S rRNA基因序列比对鉴定,菌株为纤维微菌属(Cellulosimicrobiumsp.)和假单孢菌(Pseudomonassp.),命名为7#和12#。将筛选出的7#菌与12#菌优化复配使用,研究结果表明:复配菌对液体石蜡有乳化效果,当复配菌体积比为1∶1时,乳化率最高达到77.5%;最适的生长温度为35~40℃,p H=6~8,最佳接种量(体积分数)为4%,复配菌体积比为1∶1,且培养基在初始pH,即pH=7时复配菌生长状态最佳。复配菌在37℃,pH=7条件下对原油处理7 d后,除蜡率为61.32%,降黏率达到31.58%;显微镜观察蜡晶变小,进一步说明菌株能够降解石蜡,破坏蜡晶结构,提高含蜡原油的流动性能。  相似文献   

5.
陈涛  李春荣 《应用化工》2011,40(1):34-37
从炼油厂污水池底泥中分离出3株石油降解菌。经过摇床培养研究了各菌株及混合菌对石油烃的降解性能,并考察了营养物质、电子受体对石油污染生物降解作用的影响。结果表明,25 d后,3种单菌对石油烃的降解率依次达到87.69%,52.14%,92.02%,混合菌高达93.18%;营养物质、电子受体对石油污染物生物降解影响显著,营养物质N与P适宜比为2∶1(质量比),电子受体H2O2适宜累计添加量为12 000 mg/kg。  相似文献   

6.
从采油厂受石油污染的土壤中筛选和驯化两株耐低温石油降解菌株JA和JB,以长庆原油为反应底物,采用响应面法考察p H、原油初始浓度和生物接种量对原油降解率的影响,并优化降解条件,在优化条件下进行降解动力学实验。结果表明,单因素对原油降解率的影响顺序为:p H原油初始浓度生物接种量。p H和生物接种量的交互影响对原油降解率的影响显著,根据响应面模型计算得到的最佳降解条件为:p H=7.15,原油初始浓度3 387 mg·L-1,生物接种量75 m L·L-1。3天的原油降解率最高达65.76%,低温复配菌株降解过程符合一级动力学模型。  相似文献   

7.
原油降解菌的分离及其降解性能   总被引:2,自引:0,他引:2  
从大港油田的石油污染土壤中筛选出一株高效原油降解菌株X3,研究了该菌株对原油的降解能力,比较了不同浓度下的原油对细菌生长和降解率的影响,同时还研究了pH值和盐浓度对该菌株降解原油能力的影响.研究结果表明该菌株具有一定的耐碱性和耐盐性,原油浓度对总石油烃(TPH)的降解速率有很大影响,在30℃、原油初始浓度为1000mg/L、pH值为7、NaCl浓度为5g/L的条件下,该菌株对原油的去除效果最佳,可达到72.6%.色谱分析表明碳数是影响石油烃组分降解的最大因素,碳教越大降解越难进行.  相似文献   

8.
从石油炼厂污染土壤中筛选出具有石油降解能力的菌株Pseudomonas sp.DY12,并对其降解石油烃能力进行了研究.考察了培养温度、接种量、培养基初始pH值、培养时间及摇床转速对菌株降解性能的影响,优选出菌株Pseudomonas sp.DY12降解石油烃的最佳条件,即:培养时间4 d、菌悬液接种量4%(体积分数)、培养温度30℃、培养基初始pH值7.0~8.0、摇床转速160 r·min-1,在此条件下菌株Pseudomonas sp.DY12对石油烃的降解率可达69.4%.  相似文献   

9.
《辽宁化工》2021,50(2)
考察了筛选出的3株石油降解菌C3 Pseudomonas putida、C4 Acinetobacter calcoaceticus、C5 Sphingomona sp.对石油烃的降解性能,研究了3株菌的复合菌、生物炭+复合菌、生物炭固定化复合菌等不同菌剂加入方式对含油土壤的修复效果。结果表明:3株菌均能以石油烃为唯一碳源和能源生长,C3、C4对饱和烃的去除能力较强,C5对芳香烃的去除能力较强,3株菌的复合菌对石油烃各组分的去除具有协同效果,30℃培养28d复合菌对石油烃的降解率达到79.73%;生物炭与复合菌联用对石油烃的去除具有协同效应,其去除效果CTBTB+BCTB;生物炭的加入有利于降解菌在土壤中的定殖,其中生物炭作为固定化载体加入土壤对降解菌的数量增加最为有利。  相似文献   

10.
[目的]构建烟嘧磺隆高效降解复合菌系并明确其降解特性,为高效修复烟嘧磺隆污染土壤提供理论支撑。[方法]通过富集驯化培养,从山西省不同生态区烟嘧磺隆污染土壤中筛选出5株烟嘧磺隆降解菌,通过16S rDNA和ITS序列分析鉴定降解菌的分类地位。通过全组合构建高效降解复合菌修复体系,并通过单因素试验明确其降解特性。[结果]筛选获得10株具有烟嘧磺隆降解能力的菌株,其中5株菌株降解能力较强。经16S rDNA和ITS序列鉴定和系统发育分析,5株烟嘧磺隆降解菌株分别为A枯草芽孢杆菌、B黑曲霉、C草酸青霉、D土曲霉和E绿木霉。全组合复配结果表明,由3种菌株组成的复合菌系对烟嘧磺隆降解率最好,其中ABD组合对烟嘧磺隆降解能力最高,较单株菌降解率最高的菌株D降解率提高23.74%;将筛选的A、B、D进行不同比例复配,菌株最佳复配比A∶B∶D为2∶3∶1时,烟嘧磺隆降解率最高达98.31%,各菌株对烟嘧磺隆降解的影响效果A>B>D。复合菌系较单一菌株增加了适宜的温度、pH值和烟嘧磺隆初始浓度范围,最适培养降解条件为接种量2%~5%,温度30~40℃,pH 7.0,烟嘧磺隆初始质量浓度50~2...  相似文献   

11.
以润滑油为唯一碳源,从石油污染土壤中筛选分离得到了2株润滑油降解菌,考察发现2株菌株均能生物降解润滑油,菌株X1、X2在2 d内的润滑油降解率分别达到40.83%和32.54%,其中X1的润滑油降解能力更强。通过测定16S rDNA基因序列的方法对两株菌株进行了鉴定。结果表明,所分离的2株菌株中,X1为伤口埃希菌(Escherichia vulneris),X2为黄假单胞菌(pseudomonas lutea strain)。  相似文献   

12.
经过以石油烃为唯一碳源的选择性培养基平板初筛和三角瓶发酵复筛,采用紫外分光光度法测定石油降解率,从江汉油田和冀东油田石油污染的土壤和水体中,筛选出有降解石油能力的微生物9株.其中3株细菌(X-1,X-2,X-3)降解石油能力较高,X-1菌株的石油降解率最高达64.28%.根据形态学观察和部分生理生化特征初步鉴定,该菌为节杆菌属(Arthrobacter sp.).  相似文献   

13.
以原油降解率为目标,考察了5株石油烃降解菌对原油的降解情况,确定铜绿假单胞菌、氧化微杆菌、中间苍白杆菌3株菌接种量以体积比1∶1∶1混合后,原油降解率最高达74.16%。其中,铜绿假单胞菌、氧化微杆菌对饱和烃均有明显的降解作用,中间苍白杆菌只能够降解部分烷烃。探究了不同盐度对筛选出的3株菌的影响,结果表明,当液体培养基中盐质量浓度从10 g/L上升到50 g/L时,3株菌均能生长,随着含盐质量浓度的增加,菌株浓度依次减少,生长活性减弱,细胞膜通透性变大,细胞失水,导致细胞表面出现褶皱和凹痕,细胞壁变薄,细胞质减少,严重影响了细胞的活性。  相似文献   

14.
李乐  周飞  孙先锋 《当代化工》2018,(4):672-676
从陇东油泥处理站的含油污泥中筛选分离得到5株高效石油降解菌,分别命名为LD3、LD5、LD7、W6、XB。通过菌株形态观察和生理生化反应进行初步鉴定,鉴定结果为XB属于动性球菌属(Planococcus Migula sp.),W6属于微球菌属(Micrococcus Cohn sp.),LD3属于链球菌属(Streptococcus sp.),LD5和LD7属于葡萄球菌属(Staphylococcus sp.)。通过单因素试验对5株菌的最佳降解条件进行探索,在降解温度为30℃时,5株菌的降解率均达到最高,其中LD3的降解率最大为77.80%;在培养液初始p H为7时,5株菌的降解率均达到最高,其中LD3的降解率最大为82.43%;LD3、LD7、XB的最佳接种量为6%,LD5的最佳接种量为4%,W6的最佳接种量为1%,通过对单个菌株的原油降解产物GC-MS分析,获得了各个菌株的原油组分的降解范围,采取互补原则,充分结合各菌株的降解优势,选取LD3、LD7、W6构建复合菌群,复合菌群对石油总烷烃的去除率为92.06%,复合菌群的降解残油组分GC-MS分析结果表明,复合菌群能降解原油中所含C13~C35之间的大部分烷烃,为含油污泥的实际修复提供理论指导。  相似文献   

15.
林佳辉  王丹  李霜 《化工进展》2019,38(4):1894-1902
从青海油田附近被石油污染的土壤中分离得到一株可利用原油为唯一碳源的菌株,将其命名为X4菌株。经16SrDNA分析鉴定,该菌株与中度嗜盐菌Salinicola zeshunii strain N4T(GenBank序列号为EU056581)同源性高达99%。X4菌株的最适温度为30℃,最适盐度为8%,最适pH为6.5,最佳碳源为甘油,最佳氮源为氯化铵。该菌可产生生物乳化剂,具有较强的细胞疏水性,对正辛烷、十六烷、二甲苯等典型烃类物质具有良好的乳化能力,细胞CSH值达到60%以上。在含5%盐度的无机盐培养基中,以3g/L的柴油为唯一碳源,采用GC-MS定量分析X4菌株的烃降解特征,结果表明菌株X4培养5天后柴油的总降解率达56%,菌株X4优先降解中长链烃类;C7~C13烃类的平均降解率为64.1%,C14~C20烃类的平均降解率为52.3%,C21~C31烃类的平均降解率约26.8%。离子型表面活性剂TTAB和SDS对X4菌株生长具有较强的毒性:在浓度达到100mg/L和400mg/L时能完全抑制菌体生长;在40mg/L的浓度下,使得菌株对柴油的降解率降低到20%。而X4菌株对非离子型表活剂——吐温80和生物表面活性剂——鼠李糖脂的耐受浓度均可达400mg/L。鼠李糖脂是嗜盐菌X4菌株的合适复配表活剂。  相似文献   

16.
本文以柴油和石蜡混合物为碳源,利用液体培养基富集培养石油烃类降解菌。得到的菌液通过DCIP显色实验和原油模拟降解实验初步筛选出13株降解菌菌株,并经过分子生物学的鉴定大部分为不动杆菌属和假单胞菌属。经过摇瓶培养后,HY-3、G6和8号菌对于COD和TOC的去除效果较好,并通过和活性污泥复配后发现8号菌能够有效提升SBR系统的生物处理能力,COD去除率达到90%以上。  相似文献   

17.
原位生物修复技术是解决石油污染海洋的重要途径之一。采集3个不同海域的海水水样,并对其理化性质进行分析,并在此基础上通过外加营养物质研究其对石油烃降解菌生长、降解石油烃的效果等的影响。结果发现,3个采样点石油烃降解菌种分布较少,仅分离出6株单菌3个不同的菌属。通过分析海水理化性质发现,石油烃降解菌种的数量和营养物质也较少。进一步研究不同的营养物质对石油烃降解菌生长的影响发现,磷氮元素对石油烃降解菌的生长具有显著促进作用;另外,添加氮、磷源后菌的降解效果显著提高,可以达到47.7%和49.6%。初步说明适量增加磷、氮元素对于原位生物修复石油污染海洋十分重要。  相似文献   

18.
从受石油污染的土壤中筛选和驯化了两株耐低温石油降解菌JA和JB,以核桃壳为吸附载体,制备固定化混合菌,采用响应面法对固定化混合菌处理含油废水的条件进行优化。结果表明,在石油降解菌JA和JB活菌数量比为1∶2,原油质量浓度4 300 mg/L,p H值7.9,固定化混合菌投加量27 g/L,固定化时间28.5 h条件下,固定化混合菌在5 d时间内对原油的降解率最高可达到69.94%,与模型预测值68.89%非常接近。  相似文献   

19.
从受石油污染的土壤中筛选和驯化了两株耐低温石油降解菌JA和JB,以核桃壳为吸附载体,制备固定化混合菌,采用响应面法对固定化混合菌处理含油废水的条件进行优化。结果表明,在石油降解菌JA和JB活菌数量比为1∶2,原油质量浓度4 300 mg/L,p H值7.9,固定化混合菌投加量27 g/L,固定化时间28.5 h条件下,固定化混合菌在5 d时间内对原油的降解率最高可达到69.94%,与模型预测值68.89%非常接近。  相似文献   

20.
吴金山  李明华 《广州化工》2016,(4):74-75,133
以柴油为唯一碳源,从石油污染严重的土壤中筛选到8株石油降解菌,其中菌株SH-5降解能力最强,培养5天后柴油降解率高达35.8%,经初步鉴定,该菌株为芽孢杆菌属。研究表明,环境条件显著影响SH-5菌株的柴油降解效率,在培养温度为35℃,p H为7.5,培养时间为5 d,柴油浓度较低时,石油降解率较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号