首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eighty/twenty polypropylene (PP)/styrene–ethylene–butylene–styrene (SEBS) and 80/20 PP/maleated styrene–ethylene–butylene–styrene (SEBS‐g‐MA) blends reinforced with 30 wt % short glass fibers (SGFs) were prepared by extrusion and subsequent injection molding. The influence of the maleic anhydride (MA) functional group grafted to SEBS on the properties of SGF/SEBS/PP hybrid composites was studied. Tensile and impact tests showed that the SEBS‐g‐MA copolymer improved the yield strength and impact toughness of the hybrid composites. Extensive plastic deformation occurred at the matrix interface layer next to the fibers of the SGF/SEBS‐g‐MA/PP composites during impact testing. This was attributed to the MA functional group, which enhanced the adhesion between SEBS and SGF. Differential scanning calorimetry measurements indicated that SEBS promoted the crystallization of PP spherulites by acting as active nucleation sites. However, the MA functional group grafted to SEBS retarded the crystallization of PP. Finally, polarized optical microscopy observations confirmed the absence of transcrystallinity at the glass‐fiber surfaces of both SGF/SEBS/PP and SGF/SEBS‐g‐MA/PP hybrid composites. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1303–1311, 2002  相似文献   

2.
Toughening of recycled poly(ethylene terephthalate) (PET) was carried out by blending with a maleic anhydride grafted styrene‐ethylene/butylene‐styrene triblock copolymer (SEBS‐g‐MA). With 30 wt % of the SEBS‐g‐MA, the notched Izod impact strength of the recycled PET was improved by more than 10‐fold. SEM micrographs indicated that cavitation occurred in just a small area near the notch root. Addition of 0.2 phr of a tetrafunctional epoxy monomer increased the recycled PET melt viscosity by chain extension reaction. Different from the positive effect of the epoxy monomer in toughening of nylon and PBT with elastomers, the use of the epoxy monomer in the recycled PET/SEBS‐g‐MA blends failed to further enhance dispersion quality and thus notched impact strength. This negative effect of the epoxy monomer was attributed to the faster reactivity of the epoxy group with maleic anhydride of the SEBS‐g‐MA than with the carboxyl or hydroxyl group of recycled PET. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1462–1472, 2004  相似文献   

3.
With the increasing ratio of waste tire powder (WTP) to low‐density polyethylene (LDPE), the hardness and tensile strength of the WTP/LDPE blends decreased while the elongation at break increased. Five kinds of compatibilizers, such as maleic anhydride‐grafted polyethylene (PE‐g‐MA), maleic anhydride‐grafted ethylene‐octene copolymer (POE‐g‐MA), maleic anhydride‐grafted linear LDPE, maleic anhydride‐grafted ethylene vinyl‐acetate copolymer, and maleic anhydride‐grafted styrene‐ethylene‐butylene‐styrene, were incorporated to prepare WTP/LDPE blends, respectively. PE‐g‐MA and POE‐g‐MA reinforced the tensile stress and toughness of the blends. The toughness value of POE‐g‐MA incorporating blends was the highest, reached to 2032.3 MJ/m3, while that of the control was only 1402.9 MJ/m3. Therefore, POE‐g‐MA was selected as asphalt modifier. The toughness value reached to the highest level when the content of POE‐g‐MA was about 8%. Besides that the softening point of the modified asphalt would be higher than 60°C, whereas the content of WTP/LDPE blend was more than 5%, and the blends were mixed by stirring under the shearing speed of 3000 rpm for 20 min. Especially, when the blend content was 8.5%, the softening point arrived at 82°C, contributing to asphalt strength and elastic properties in a wide range of temperature. In addition, the swelling property of POE‐g‐MA/WTP/LDPE blend was better than that of the other compalibitizers, which indicated that POE‐g‐MA /WTP/LDPE blend was much compatible with asphalt. Also, the excellent compatibility would result in the good mechanical and processing properties of the modified asphalt. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Propylene random copolymer (PPR)/styrene‐ethylene‐butylene‐styrene block copolymer (SEBS)/compatibilizer/organic‐montmorillonite (OMMT) quaternary nanocomposites and PPR/compatibilizer/OMMT ternary nanocomposites were prepared via two‐stage melt blending and influences of compatibilizers, maleic anhydride (MA) grafted styrene‐ethylene‐butylene‐styrene copolymer (SEBS‐g‐MA), poly(octene‐co‐ethylene) (POE‐g‐MA), or propylene block copolymers (PPB‐g‐MA), on rheology and mechanical properties of the nanocomposites were investigated. The results of X‐ray diffraction measurement and transmission electron microscopy observation showed that OMMT layers were mainly intercalated in the nanocomposites except for the mainly exfoliated structure in the quaternary nanocomposites using POE‐g‐MA as compatibilizer. The nanocomposites exhibited pseudo‐solid like viscoelasticity in low frequencies and shear‐thinning in high shear rates. As far as OMMT dispersion was concerned, POE‐g‐MA was superior to SEBS‐g‐MA and PPB‐g‐MA, which gives rise to the highest viscosities in both the ternary and quaternary nanocomposites. The quaternary nanocomposites containing POE‐g‐MA were endowed with balanced toughness and rigidity. It was suggested that a suitable combination of compatibilizer and SEBS was an essentially important factor for adjusting the OMMT dispersion and distribution, the rheological and mechanical performances of the nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
Short‐glass‐fiber (SGF)‐reinforced polypropylene (PP) composites toughened with a styrene/ethylene butylene/styrene (SEBS) triblock copolymer were injection molded after extrusion. Furthermore, a maleic anhydride (MA)‐grafted SEBS copolymer (SEBS‐g‐MA) was used as an impact modifier and compatibilizer. The effects of the processing conditions and compatibilizer on the microstructure and tensile and impact performance of the hybrid composites were investigated. In the route 1 fabrication process, SGF, PP, and SEBS were blended in an extruder twice, and this was followed by injection molding. In route 2, or the sequential blending process, the elastomer and PP were mixed thoroughly before the addition of SGF. In other words, either PP and SEBS or PP and SEBS‐g‐MA pellets were premixed in an extruder. The produced pellets were then blended with SGF in the extruder, and this was followed by injection molding. The SGF/SEBS‐g‐MA/PP hybrid fabricated by the route 2 process exhibited the highest modulus, yield stress, tensile stress at break, Izod impact energy, and Charpy drop weight impact strength among the composites investigated. This was due to the formation of a homogeneous SEBS elastomeric interlayer at the SGF and matrix interface of the SGF/SEBS‐g‐MA/PP hybrid. This SEBS rubbery layer enhanced the interfacial bonding between SGF and the matrix of the SGF/SEBS‐g‐MA/PP hybrid. The correlations between the processing, microstructure, and properties of the hybrids were investigated. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1384–1392, 2003  相似文献   

6.
Polypropylene hybrid composites reinforced with short glass fiber (SGF) and toughened with styrene–ethylene butylenes–styrene (SEBS) elastomer were prepared using extrusion and injection‐molding techniques. Moreover, hybrids compatibilized with SEBS‐grafted maleic anhydride (SEBS‐g‐MA) and hybrid compatibilized with PP grafted with maleic anhydride (PP‐g‐MA) were also fabricated. The matrix of the latter hybrid was designated as mPP and consisted of 95% PP and 5% PP‐g‐MA. Tensile dilatometry was carried out to characterize the fracture mechanisms of hybrid composites. Dilatometric responses showed that the elastic deformation was the dominant deformation mechanism for the SGF/SEBS/PP and SGF/SEBS‐g‐MA/PP hybrids. However, cavitation deformation prevailed over shearing deformation for both hybrids at the higher strain regime. The cavitation strain resulted from the debonding of glass fibers and from the crazing of the matrix in the SGF/SEBS/PP hybrid. In contrast, the cavitation was caused by the debonding of SEBS particles from the matrix of the SGF/SEBS‐g‐MA/PP hybrid. The use of PP‐g‐MA resulting in elastic deformation was the main mode of deformation in the low‐strain region for the SGF/SEBS/mPP and SEBS/SEBS‐g‐MA/mPP hybrids; thereafter, shearing appeared to dominate at the higher strain regime. This was attributed to the MA functional group improving the bonding between the SGF and PP. The correlation between fracture morphology and dilatometric responses also is presented in the article. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 441–451, 2003  相似文献   

7.
To investigate the effect of interfacial interaction on the crystallization and mechanical properties of polypropylene (PP)/nano‐CaCO3 composites, three kinds of compatibilizers [PP grafted with maleic anhydride (PP‐g‐MA), ethylene–octene copolymer grafted with MA (POE‐g‐MA), and ethylene–vinyl acetate copolymer grafted with MA (EVA‐g‐MA)] with the same polar groups (MA) but different backbones were used as compatibilizers to obtain various interfacial interactions among nano‐CaCO3, compatibilizer, and PP. The results indicated that compatibilizers encapsulated nano‐CaCO3 particles, forming a core–shell structure, and two interfaces were obtained in the compatibilized composites: interface between PP and compatibilizer and interface between compatibilizer and nano‐CaCO3 particles. The crystallization and mechanical properties of PP/nano‐CaCO3 composites were dependent on the interfacial interactions of these two interfaces, especially the interfacial interaction between PP and compatibilizer. The good compatibility between PP chain in PP‐g‐MA and PP matrix improved the dispersion of nano‐CaCO3 particles, favored the nucleation effect of nano‐CaCO3, increased the tensile strength and modulus, but reduced the ductility and impact strength of composites. The partial compatibility between POE in POE‐g‐MA and PP matrix had little effect on crystallization and mechanical properties of PP/nano‐CaCO3 composites. The poor compatibility between EVA in EVA‐g‐MA and PP matrix retarded the nucleation effect of nano‐CaCO3, and reduced the tensile strength, modulus, and impact strength. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Friction and wear characteristics of polyamide 66 (PA66) and the composites of organoclay modified by styrene–ethylene/butylene–styrene triblock copolymer grafted with 1.84 wt% of maleic anhydride (SEBS‐g‐MA) were studied using an Universal Micro Tribometer reciprocating friction and wear tester. The morphologies of the wear tracks of PA66 and the composites were observed using a scanning electron microscope. The results showed that plastic deformation induced by the traction of the harder steel ball occurred on the worn surfaces of PA66 and the composite which were reinforced by SEBS‐g‐MA copolymer. It was found that the average frictional coefficient and specific wear rate of PA66/SEBS‐g‐MA binary composite are lowest under the same conditions. This indicates that toughness and wear resistance of PA66 matrix are improved with the incorporation of SEBS‐g‐MA copolymer. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

9.
In the present study, the fracture properties of different types of organophilic montmorillonite (OMMT) filled polyamide 6/polypropylene nanocomposites was investigated. Two types of compatibilizers, i.e., maleic anhydride grafted polypropylene (PP‐g‐MA) and maleic anhydride grafted styrene‐ethylene/butylene‐styrene (SEBS‐g‐MA) were used to compatibilize these systems. The tensile properties were studied through tensile test at two different testing speeds; 50 and 500 mm/min whereas the fracture properties were determined using single‐edge‐notch‐3 point‐bending (SEN‐3PB) specimens at three different testing speeds; 1, 100, and 500 mm/min. The presence of both PP‐g‐MA and SEBS‐g‐MA compatibilizers improved the tensile and fracture properties of nanocomposites due to the compatibilizing effect of both compatibilizers. SEBS‐g‐MA compatibilizer seemed to be more effective in improving the fracture toughness of nanocomposites than PP‐g‐MA especially at high testing speed. This was due to the elastomeric nature of SEBS‐g‐MA, which can provide a better toughening effect than the relatively harder PP‐g‐MA. POLYM. ENG. SCI., 50:1493–1504, 2010. © 2010 Society of Plastics Engineers  相似文献   

10.
Supermolecular structure of isotactic polypropylene/wollastonite/styrenic rubber block copolymers composites were studied as a function of elastomeric poly‐ (styrene‐b‐ethylene‐co‐butylene‐b‐styrene) triblock copolymer (SEBS) and the SEBS grafted with maleic anhydride (SEBS‐g‐MA) content (from 0 to 20 vol%) by optical, scanning, and transmission electron microscopy, wide‐angle X‐ray diffraction and differential scanning calorimetry. Wollastonite particles disturbed the spherulitization of polypropylene matrix. Both elastomers affected the crystallization of polypropylene matrix mainly by solidification effect. Although SEBS‐g‐MA encapsulated wollastonite particles more expressive than SEBS forming thus core‐shell morphology in higher extent, scanning electron micrographs indicated more constrained wollastonite particles in fractured surfaces of composites with SEBS elastomer. Moreover, SEBS‐g‐MA disorientated wollastonite particles and affected reorientation of the polypropylene crystallites stronger than SEBS elastomer. POLYM. ENG. SCI., 47:2145–2154, 2007. © 2007 Society of Plastics Engineers  相似文献   

11.
Steady‐ and oscillatory‐shear rheological behaviors of polypropylene/glass bead (PP/GB) and PP/wollastonite (PP/W) melts modified with thermoplastic elastomers, poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) copolymer (SEBS) and the corresponding block copolymer grafted with maleic anhydride (SEBS‐g‐MA), were examined by means of a parallel‐plate rheometer. With adding the elastomers (SEBS and SEBS‐g‐MA) and fillers (spherical GB and acicular W) to PP, viscosity especially at low shear rates and shear‐thinning flow behavior at high shear rates were pronounced as evidenced quantitatively by Carreau–Yasuda (CY) parameters, but Cox–Merz analogy became weakened. Besides, melt‐elasticity in terminal region and relaxation time (tc) in crossing point increased, indicating an enhancement in quasi‐solid behavior of molten PP. Comparing with the elastomers, rheological behaviors of molten PP were more influenced with adding the rigid fillers, especially with W due to distinct acicular shape of W particles. SEBS‐g‐MA elastomer more affected rheological behaviors of the ternary composites than SEBS elastomer, implying that SEBS elastomer and the filler particles behaved individually (i.e., development of separate microstructure) in (PP/GB)/SEBS and (PP/W)/SEBS ternary composites, but core‐shell microstructure developed with strong interfacial adhesion by adding SEBS‐g‐MA elastomer, and the filler particles encapsulated with the thick SEBS‐g‐MA elastomer interlayer (i.e., core‐shell particles) acted like neither big elastomer particles nor like individual rigid particles in melt‐state. Moreover, effects of SEBS‐g‐MA elastomer reached a maximum on rheological behaviors of (PP/W)/SEBS‐g‐MA ternary composite, indicating a synergy between core‐shell microstructure and acicular W particles. Correlations between oscillatory‐shear flow properties and microstructures of the blends and composites were evaluated using Cole–Cole (CC), Han–Chuang (HC), and van Gurp–Palmen (vGP) plots. COMPOS., 2012. © 2012 Society of Plastics  相似文献   

12.
Mechanical properties of the isotactic‐polypropylene/glass bead (iPP/GB) and iPP/wollastonite (iPP/W) composites modified with thermoplastic elastomers, the poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) copolymer (SEBS) and corresponding block copolymer grafted with maleic anhydride (SEBS‐g‐MA), were investigated. An increase in toughness of iPP with the elastomers was associated with a decrease in rigidity and strength. Mechanical performance of iPP increased more with acicular W than with spherical GB due to reinforcing effect of W. Comparing the (iPP/GB)/SEBS and (iPP/W)/SEBS composites having the separate microstructure, strength and toughness values of the iPP/GB and iPP/W composites increased more with SEBS‐g‐MA at the expense of rigidity due to the core‐shell microstructure with strong interfacial adhesion. Moreover, the iPP/W composite exhibited superior mechanical performance with 2.5 and 5 vol% of SEBS‐g‐MA because of a positive synergy between the core‐shell microstructure and reinforcing effect of acicular W. The extended models revealed that the elastomer and filler particles in the (iPP/GB)/SEBS and (iPP/W)/SEBS composites acted individually due to the separate microstructure. However, the rigid GB and W particles encapsulated with the thick elastomer interlayer (R0/R1 = 0.91) in the (iPP/GB)/SEBS‐g‐MA and (iPP/W)/SEBS‐g‐MA composites acted like neither big elastomer particles nor like individual rigid particles, inferring more complicated failure mechanisms in the core‐shell composites. POLYM. COMPOS., 31:1285–1308, 2010. © 2010 Society of Plastics Engineers  相似文献   

13.
Mechanical properties of isotactic polypropylene/wollastonite/styrene rubber block copolymers (iPP/wollastonite/SRBC) composites were studied as a function of elastomeric poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) triblock copolymer (SEBS) and SEBS grafted with maleic anhydride (SEBS‐g‐MA) content from 0 to 20 vol%. Microphase morphology was stronger influenced by SRBC elastomers than by different wollastonite types. Higher encapsulation ability of SEBS‐g‐MA than SEBS caused more expressive core‐shell morphology and consequently higher notched impact strength as well as yield parameters, but lower Young's modulus. Higher ductility of the composites with SEBS than with SEBS‐g‐MA has been primarily caused by better miscibility of the polypropylene chains with SEBS molecules. Surface properties of components and adhesion parameters also indicated that adhesion at SEBS‐g‐MA/wollastonite interface, which was stronger than the one at the SEBS/wollastonite interface, influenced higher encapsulation of wollastonite particles by SEBS‐g‐MA. POLYM. ENG. SCI., 47:1873–1880, 2007. © 2007 Society of Plastics Engineers  相似文献   

14.
Microstructural characteristics of isotactic‐polypropylene/glass bead (iPP/GB) and iPP/wollastonite (iPP/W) composites modified with thermoplastic elastomers, poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) copolymer (SEBS) and corresponding block copolymer grafted with maleic anhydride (SEBS‐g‐MA), were investigated. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and dynamic mechanical analyses (DMA) showed that the iPP/SEBS and iPP/SEBS‐g‐MA blends were partially compatible two‐phase systems. Well‐dispersed spherical GB and acicular W particles without evidence of interfacial adhesion were observed in the iPP/GB and iPP/W binary composites respectively. Contrary to the blends, melt flow rates of the iPP/GB and PP/W composites decreased more with SEBS‐g‐MA than with SEBS because of enhanced interfacial adhesion with SEBS‐g‐MA elastomer. The SEM analyses showed that the ternary composites containing SEBS exhibited separate dispersion of the rigid filler and elastomer particles (i.e., separate microstructure). However, SEBS‐g‐MA elastomer not only encapsulated the spherical GB and acicular W particles completely with strong interfacial adhesion (i.e., core‐shell microstructure) but also dispersed separately throughout iPP matrix. In accordance with the SEM observations, the DSC and DMA revealed quantitatively that the rigid filler and SEBS particles in iPP matrix acted individually, whereas the rigid filler particles in the ternary composites containing SEBS‐g‐MA acted like elastomer particles because of the thick elastomer interlayer around the filler particles. The Fourier transform infrared analyses revealed an esterification reaction inducing the strong interfacial adhesion between the SEBS‐g‐MA phase and the filler particles. POLYM. COMPOS., 31:1265–1284, 2010. © 2009 Society of Plastics Engineers  相似文献   

15.
Synthesis and characterization of a novel toughener–compatibilizer for polypropylene (PP)–montmorillonite (MMT) nanocomposites were conducted to provide enhanced mechanical and thermal properties. Poly(ethylene oxide) (PEO) blocks were synthetically grafted onto maleic anhydride‐grafted polystyrene‐block‐poly(ethylene/butylene)‐block‐polystyrene (SEBS‐g‐MA). Special attention was paid to emphasize the effect of PEO‐grafted SEBS (SEBS‐g‐PEO) against SEBS‐g‐MA on morphology, static/dynamic mechanical properties and surface hydrophilicity of the resultant blends and nanocomposites. It was found that the silicate layers of neat MMT are well separated by PEO chains chemically bonded to nonpolar SEBS polymer without needing any organophilic modification of the clay as confirmed by X‐ray diffraction and transmission electron microscopy analyses. From scanning electron microscopy analyses, elastomeric domains interacting with MMT layers via PEO sites were found to be distributed in the PP matrix with higher number and smaller sizes than the corresponding blend. As a benefit of PEO grafting, SEBS‐g‐PEO‐containing nanocomposite exhibited not only higher toughness/impact strength but also increased creep recovery, as compared to corresponding SEBS‐g‐MA‐containing nanocomposite and neat PP. The damping parameter of the same nanocomposite was also found to be high in a broad range of temperatures as another advantage of the SEBS‐g‐PEO toughener–compatibilizer. The water contact angles of the blends and nanocomposites were found to be lower than that of neat hydrophobic PP which is desirable for finishing processes such as dyeing and coating. © 2018 Society of Chemical Industry  相似文献   

16.
In past research, mechanical recycling of automotive shredder residue (ASR) has led to serious deterioration of material performance, and real‐scale application in this way still remains a challenge. Here, we report a sustainable approach called solid‐state shear milling (SSSM) for the production of high‐performance polypropylene (PP)/ASR composites with robust mechanical performance on a commercial scale. After the SSSM process, the obtained 50/50 wt% PP/ASR composite exhibited a 41.3% increase in tensile strength, 32.9% increase in flexural strength and 55.0% increase in impact toughness when compared with corresponding composites made by traditional direct melt blending. In particular, the toughness of the material can be improved by further addition of PP grafted with maleic anhydride with toughness comparable to that of recycled PP, and a 325% increase in toughness can be obtained with addition of styrene–butadiene–styrene block copolymer grafted with maleic anhydride. This PP/ASR composite shows good processability and high thermal stability, and meets the requirements of many applications for nonstructural products. The approach presented in this paper highlights a novel technique for ASR recycling. © 2018 Society of Chemical Industry  相似文献   

17.
Flame retardant polypropylene (PP) composites were prepared by combining random polypropylene with uncoated and surface‐treated forms of magnesium hydroxide filler and elastomeric modifiers, with and without maleic anhydride functionalization. Four types of magnesium hydroxide (MDH) with different surface treatments were compounded at amounts up to 60% by weight to PP/polyolefin elastomer (POE) matrix resin to obtain a series of composites. The tensile strength and elongation at break were measured. MDH coated with polymeric material was found to give a high elongation at break value compared with the values obtained with uncoated and vinyl silane and amino silane coated MDH. Two types of POE, i.e., neat and maleic anhydride grafted POE (POEgMA), were used to investigate the stress whitening of composites in bending deformation. POEgMA used composites showed no stress whitening while neat POE used composites showed whitening when bended. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2311–2318, 2005  相似文献   

18.
The aim of this study was to improve the toughness of recycled poly(ethylene terephthalate) (PET)/glass fiber (GF) blends through the addition of ethylene–butyl acrylate–glycidyl methacrylate copolymer (EBAGMA) and maleic anhydride grafted polyethylene–octene (POE‐g‐MAH) individually. The morphology and mechanical properties of the ternary blend were also examined in this study. EBAGMA was more effective in toughening recycled PET/GF blends than POE‐g‐MAH; this resulted from its better compatibility with PET and stronger fiber/matrix bonding, as indicated by scanning electron microscopy images. The PET/GF/EBAGMA ternary blend had improved impact strength and well‐balanced mechanical properties at a loading of 8 wt % EBAGMA. The addition of POE‐g‐MAH weakened the fiber/matrix bonding due to more POE‐g‐MAH coated on the GF, which led to weakened impact strength, tensile strength, and flexural modulus. According to dynamic rheometer testing, the use of both EBAGMA and POE‐g‐MAH remarkably increased the melt storage modulus and dynamic viscosity. Differential scanning calorimetry analysis showed that the addition of EBAGMA lowered the crystallization rate of the PET/GF blend, whereas POE‐g‐MAH increased it. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
To develop new tribomaterials for mechanical sliding parts, investigations were carried out on the influence of adding styrene–ethylene/butylene–styrene block copolymer (SEBS) on the rheological, mechanical, and tribological properties of polyamide 6 (PA6) nanocomposite, which is a commercial product of layered silicate (clay) filled polyamide 6 (PA6/Clay). Two kinds of block copolymers, unmodified SEBS (SEBS) and maleic anhydride‐grafted SEBS (SEBS‐g‐MA), were added with PA6/Clay nanocomposite. Dynamic viscoelastic properties in the molten state of these nanocomposites and their tensile, impact, and tribological properties of these nanocomposites were evaluated. Dynamic viscoelastic properties were found to increase with the addition of SEBS and were influenced, in particular, by block copolymers containing SEBS‐g‐MA. Influence of the addition of SEBS on mechanical properties of these systems differed for each mechanical property. Although tensile properties decreased with SEBS, Izod impact properties were improved with the addition of SEBS‐g‐MA. Tribological properties were improved with the addition of block copolymer, and the influence of the amount of addition was higher than the type of block copolymer used. These results indicate that new tribomaterials developed have sufficient balance amongst moldability, mechanical, and tribological properties. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号