首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
通过有机聚合物先驱体法使用四氯化硅(SiCl4)、苯甲醛(PhCHO)、烷基胺(RNH2)、三氯化硼(BCl3)为原料,通过有机-无机裂解转化制备了SiBONC陶瓷的纳米粉体.在对SiBONC陶瓷粉末坯体进行高温气压处理时,发现在坯体表面生长出大量β-SiC纳米线.通过XRD、FT-IR、SEM、TEM等分析测试手段分析了该纳米线的微观结构和物相组成,并初步推断了其生长机制.结果表明:该纳米线为结晶良好的β-SiC,其主要组成元素为Si、C及少量的O;其直径在20~200 nm之间,其平均长度在1 mm左右.  相似文献   

2.
以含碳的二氧化硅干凝胶为原料,采用碳热还原法制备了孪晶结构β-SiC纳米线。通过场发射扫描电镜、X射线衍射和高分辨透射电镜等测试分析表明,SiC纳米线具有六角形的横截面,直径50~300nm,沿着纳米线生长方向具有准周期性的(111)面孪晶结构。结合气-固生长机理及(111)密排面堆垛次序的变化讨论了孪晶纳米线的生长机理。光致发光谱表明,SiC纳米线在470nm附近有数个相对β-SiC体单晶的发光特征蓝移,且分裂的发光峰。这种发光现象可解释为堆垛层错导致相互隔离的β-SiC纳米片段的量子尺寸效应。  相似文献   

3.
在无催化剂条件下,以CH3SiCl3为前驱体,采用化学气相沉积技术(CVD)在C/C复合材料表面制备SiC纳米线。SEM形貌表明:CVD产物有大量数十微米长的纳米线,部分纳米线团聚呈球状,同时也发现类似带刺板栗外壳的短纳米线聚集,且纳米颗粒在其表面沉积等现象。XRD、拉曼光谱和红外光谱分析结果表明,此产物为典型的β-SiC。TEM形貌表明,此类纳米线的直径分布范围为10~100 nm,一些较细的纳米线可通过无定形SiC与较粗的纳米线结合在一起。在一根较粗SiC纳米线的无定形区域长出一根与其直径相近的分支,二者之间的夹角为70°,其与β-SiC晶体中[111]轴堆垛夹角一致。SAED和FFT结果表明,纳米线的生长轴线较多,在纳米线的竹节状区域存在大量堆垛层错和孪晶。边缘弯曲的SiC纳米线晶格面表明,螺旋位错生长为其主要的生长机制。  相似文献   

4.
采用聚合物先驱体热解技术,以聚合物先驱体-聚碳硅烷(Polycarbosilane,PCS)为原料,在催化剂辅助作用下,于1200℃热解制备出超长碳化硅(SiC)纳米线.采用电子能量散射(EDS)、扫描电镜(SEM)、透射电镜(TEM)和x射线衍射(XRD)等分析手段对SiC纳米线进行了表征.结果表明,所制备的纳米线为高结晶性β-SiC,纳米线直径约为30 nm~300 nm,长度可达数毫米.利用.气-固"生长机制对SiC纳米线的生长过程进行了分析.  相似文献   

5.
以六甲基二硅胺烷(HMDS)作为硅源和碳源,H2为载气,Ar为稀释气体,前驱体由载气通过鼓泡法带入反应室,通过等温化学气相渗透法(Isothermal Chemical vapor Infiltration,ICVI)在SiC纤维表面沉积SiC涂层.通过控制沉积温度来控制涂层的表面形貌、厚度.研究表明,在1100℃沉积的涂层中开始有β-SiC晶相析出,适当降低沉积温度至950℃可以防止残余碳在反应室的富集,在950℃时SiC的沉积厚度与沉积时间呈近线性关系.  相似文献   

6.
采用高能球磨法制备纳米TiC颗粒,通过对不同球磨时间试样进行X射线衍射分析、扫描电镜及透射电镜进行形貌观察,得出球磨过程中TiC的生成机理。结果表明,球磨过程中,首先石墨和钛粉细化,石墨形成片状而钛粉形成细小颗粒;随着球磨时间的延长,片状石墨包裹钛粉;当磨球碰撞时达到Ti和C反应温度,Ti和C发生反应产生TiC,反应放出的热量维持反应的进行。制备的TiC粒度为10~100nm。  相似文献   

7.
连续旋转化学气相浸渗是在CVI原理基础上发展的一种快速制备C/C复合材料的新工艺。通过底部发热体加热使石墨衬底及缠绕其上的二维C布获得了具有低、中、高三个温度区域的合理温度场 ,使微观孔隙与宏观孔隙分别在不同的温度区进行致密化。在沉积过程中反应物气体渗入的深度仅为一层 (或几层 )C布 ,突破了一般CVI法中“瓶颈”效应对沉积温度的制约 ,使沉积速度显著提高。通过实验研究了沉积温度、反应物气体中C3H6 浓度和衬底旋转线速度等对沉积速度的影响 ,以及反应物气体在反应区的停留时间与沉积温度对C3H6 转化率的影响。  相似文献   

8.
机械与热综合活化法制备超细WC-Co粉末   总被引:1,自引:0,他引:1  
研究了WO3、Co3O4和石墨混合粉末经高能球磨活化后再分步进行还原和碳化反应制备超细WC-Co粉末的过程.结果表明:球磨30 h后,粉末粒径达到70~100 nm.450~700℃温度范围内球磨粉在流动H2和Ar混合气体中经2 h还原时,随着还原温度的升高,WO3还原反应顺序为WO3→WO2.9→WO2.72→WO2→W,700℃时可实现完全还原;Co3O4在450℃完全还原为Co,随着温度的进一步升高和时间的延长,Co与W反应转变为Co3W;最终还原产物由W、Co、Co3W和石墨组成;在700~1 000℃温度范围内还原粉在流动Ar中碳化时,随着碳化温度的升高,碳化反应按W(Co3W)→Co6W6C→Co3W3C→W2C→WC的顺序进行,在900℃下还原粉在2 h内可完全碳化,得到WC颗粒尺寸约为200~300 nm的WC-Co复合粉末.  相似文献   

9.
低氮气压下燃烧合成Al掺杂β-SiC粉体的微波介电性能   总被引:1,自引:0,他引:1  
以硅粉(Si)和炭黑(C)为原料、聚四氟乙烯(PTFE)为助燃剂、铝粉(Al)为掺杂源,在低压氮气气氛中通过燃烧合成的方法制备出Al掺杂β-SiC粉体.用XRD、SEM和EDS对其进行了表征,同时在频率8.2~12.4 GHz范围内对其进行介电常数的测试.结果表明未掺杂Al时生成富碳β-SiC粉体;当掺杂Al时并未生成AlN-SiC固溶体,而是Al原子进入到碳化硅晶格中占据硅的位置形成了Al/SiC固溶体,引起β-SiC晶格常数的逐渐增大.当Al掺杂含量为5 mol%时晶粒最小,同时出现了Al_2O_3杂质相,但是其介电常数实部和介电损耗达到最大值,同时对Al对β-SiC介电损耗的影响进行了讨论.  相似文献   

10.
C/C-SiC材料的快速制备及显微结构研究   总被引:3,自引:1,他引:3  
分别以碳毡和二维碳纤维为预制体,采用化学液相气化渗入法结合熔融渗硅反应法快速制备了C/C-SiC陶瓷复合材料。对这种材料的密度和气孔率进行了表征,并通过XRD,OM和SEM等方法对其相组成、显微结构和反应机理进行了研究。结果表明:不同预制体制备的C/C—SiC材料密度和气孔率分别为~2.0g/cm^3和~1.0%。其相组成包括反应生成β-SiC以及未反应的游离Si和C。C/C—SiC中纤维被环状的沉积碳包裹,生成SiC的反应只发生在Si与沉积碳之间,纤维没有损伤。Si,C和SiC各相分布和含量因预制体的不同而有明显差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号