首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
以柔性轴承为研究对象,基于赫兹接触理论和弹性薄壁圆环理论,建立柔性轴承等温椭圆点接触弹流润滑模型,对滚珠及内外圈滚道的接触区受载荷最大位置处进行弹流润滑数值分析;计算危险点的曲率半径、速度及载荷,分析载荷及速度变化对该位置润滑性能的影响。研究结果表明:套圈变形使得润滑接触区峰值压力增大、膜厚减小;柔性轴承弹流润滑油膜最小膜厚及中心膜厚均随载荷的增大而减小,油膜压力随载荷的增大而变大,表明载荷增大对柔性轴承的承载有一定影响;随转速的增大最小膜厚及中心膜厚均增大,表明在一定范围内,适当提高转速能够改善润滑性能。  相似文献   

2.
在经典的弹性流体动力润滑理论分析中,油膜压力的计算要满足载荷平衡条件,而这一条件并不适用于发生在限制空间中的弹流润滑,当弹流润滑发生在限制间隙中,油膜的承载力会随工作参数的变化而变化。对限制间隙条件下等温线接触弹流润滑问题进行数值分析,研究油膜厚度及压力的变化规律。结果表明:在限制间隙等温线接触弹流润滑条件下,油膜厚度及压力随速度参数以及材料参数的增加而增加,而限制间隙增加时,膜厚增加,压力减小。根据数值分析结果,拟合出限制间隙条件下的膜厚计算公式,该公式有较小的计算误差。  相似文献   

3.
建立了齿轮齿条传动的热弹流润滑模型,考虑齿轮热效应和正负变位齿轮沿啮合线在不同啮合点的综合曲率半径变化、卷吸速度的变化和单双齿啮合引起的载荷变化,分析齿轮齿条传动机构在不同瞬时、载荷随时间变化的非稳态弹流润滑数值解。讨论了变位系数对齿轮齿条弹流润滑油膜压力和膜厚的影响并分析了正变位和负变位对中心膜厚和最小膜厚的影响规律。结果表明,正变位可以降低油膜压力,增加膜厚,改善齿轮齿条机构的润滑状态;负变位使油膜压力升高,膜厚变薄。因此,设计齿轮齿条传动机构时,在符合要求的前提下,应尽量选择正变位齿轮,避免选择负变位齿轮。  相似文献   

4.
在经典的弹性流体动力润滑理论分析中,油膜压力的计算要满足载荷平衡条件,而这一条件并不适用于发生在限制空间中的弹流润滑,当弹流润滑发生在限制间隙中,油膜的承载力会随工作参数的变化而变化。对限制间隙条件下等温线接触弹流润滑问题进行数值分析,研究油膜厚度及压力的变化规律。结果表明:在限制间隙等温线接触弹流润滑条件下,油膜厚度及压力随速度参数以及材料参数的增加而增加,而限制间隙增加时,膜厚增加,压力减小。根据数值分析结果,拟合出限制间隙条件下的膜厚计算公式,该公式有较小的计算误差。  相似文献   

5.
建立磁流体润滑机床主轴滑动轴承的弹流润滑模型,并进行弹流润滑数值模拟分析.探讨载荷和速度对磁流体润滑膜压力和膜厚的影响.分析结果表明:在磁流体润滑条件下,当转速不变时,压力峰值随着载荷的增大而增大,入口区压力、膜厚及最小膜厚随载荷的增大而减小;当载荷不变时,压力随着速度的增加没有明显变化,膜厚及最小膜厚都随速度增大而增加.  相似文献   

6.
渐开线直齿轮时变热弹流润滑模拟   总被引:2,自引:0,他引:2  
齿轮的非稳态弹流润滑问题,由于啮合过程中滑滚比、曲率半径、卷吸速度和载荷变化范围较大,因此数值计算稳定性很差。而考虑热效应的齿轮非稳态弹流润滑问题,数值计算就更困难。文中应用多重网格技术,考虑时变和温度场的影响,求得齿轮非稳态热弹流润滑问题的完全数值解,结果更接近实际。数值解得到轮齿的摩擦因数、油膜最高温升沿啮合线的变化规律以及两轮齿接触点中心压力、中心膜厚、最小膜厚沿啮合线的变化规律,同时获得任意瞬时轮齿接触点的压力、膜厚和轮齿间油膜温度分布,对分析齿轮传动问题具有重要意义。  相似文献   

7.
利用考虑热、磁场和非牛顿效应的雷诺方程,并且采用多重网格法和多重网格积分法,对指数率非牛顿水基磁流体滑动轴承进行热弹流润滑分析。探讨了非牛顿流体指数、磁场强度、滑滚比和曲率半径对水基磁流体弹流润滑膜膜厚和压力的影响。结果表明:在水基磁流体润滑的条件下,水基磁流体润滑膜厚随着指数的增加而减小,压力随着指数的增加的变化不明显;随着磁场强度和滑动轴承滑滚比的增大,水基磁流体润滑膜的膜厚增大,压力无明显变化;随着滑动轴承曲率半径的增大,水基磁流体润滑膜的膜厚减小,入口区压力增大,压力峰减小。  相似文献   

8.
《机械传动》2017,(1):11-15
以轧机油膜轴承为研究对象,利用考虑热效应的Relnolds方程建立了油水两相弹流润滑模型,对比了3种常用衬套材料对轧机油膜轴承润滑性能的影响,结合轧机油膜轴承的特殊工况讨论了不同含水量、主轴转速和轧制力下的油水两相流体的润滑特性。结果表明:3种衬套材料中,巴氏合金的最大压力及中心压力最小,整体膜厚、中心膜厚及最小膜厚值最大,润滑性能最好,最大温度最大,散热性最好,选用巴氏合金作为衬套材料最为合适;油膜进水后随着含水量的增加,最大压力减小,润滑膜入口区的压力增大,最小膜厚增大,润滑性能提升;随着主轴转速增加,润滑膜最大压力减小,入口区压力增大,最小膜厚增加;随着轧制力的增加,最大压力增大,入口区压力减小,最小膜厚减小。  相似文献   

9.
以轧机油膜轴承为研究对象,利用考虑时变和热效应的Reynolds方程建立油水两相流的弹流润滑模型,分析轧机油膜轴承在水介入润滑油后对其润滑的瞬态影响,并讨论不同初始条件下的瞬态润滑特性。结果表明:不同瞬时下,润滑膜的压力膜厚变化明显;润滑油介入水后,随着含水量的增加,润滑油黏度增加,润滑膜的中心压力及中心膜厚增加,最小膜厚先增大后减小,最大温度降低;随着初始转速的增加,最大压力减小,入口区压力、二次压力峰值及膜厚均增加;随着初始轧制力的增加,最大压力增加,入口区压力、二次压力峰值及膜厚均减小。  相似文献   

10.
建立了含固体颗粒的弹流润滑模型,推导了考虑颗粒效应的Reynolds方程,考虑了时变效应、载荷和转速,对直齿轮跑合进行了弹流润滑分析。结果表明:颗粒所在区域2的油膜压力显著增大,考虑颗粒后的膜厚减小。颗粒尺寸增大,油膜压力增大,膜厚减小。载荷增大,颗粒所在区域2的油膜压力增大,膜厚减小。转速越小,固体颗粒效应越明显,油膜压力变化显著,膜厚变小。考虑固体颗粒后的最小膜厚和最大压力均变小,中心油膜压力有所增大,中心膜厚减小。  相似文献   

11.
以轧机油膜轴承为研究对象,利用考虑时变和热效应的Reynolds方程建立油水两相流的弹流润滑模型,分析轧机油膜轴承在水介入润滑油后对其润滑的瞬态影响,并讨论不同初始条件下的瞬态润滑特性。结果表明:不同瞬时下,润滑膜的压力膜厚变化明显;润滑油介入水后,随着含水量的增加,润滑油黏度增加,润滑膜的中心压力及中心膜厚增加,最小膜厚先增大后减小,最大温度降低;随着初始转速的增加,最大压力减小,入口区压力、二次压力峰值及膜厚均增加;随着初始轧制力的增加,最大压力增加,入口区压力、二次压力峰值及膜厚均减小。  相似文献   

12.
由于薄壁构件在受力情况下产生挠度变形,对弹流润滑有一定影响,导致原来的弹流润滑计算存在较大误差,经典的接触模型已不再适用。提出一种考虑薄壁平板挠度变形的弹流润滑线接触模型,该模型能够确切反映薄壁平板的挠度变形对弹流润滑的影响;采用有限元仿真软件建立薄壁平板的挠度变形模型,在挠度变形的基础上,分析速度参数及载荷参数对线接触弹流润滑性能的影响。研究结果表明:挠度变形对薄壁件润滑的影响十分明显,油膜压力减小,中心膜厚分布范围增大,膜厚值减小;随着速度及载荷参数发生变化,油膜压力及膜厚也相应地发生改变;当其他条件不变时,中心油膜厚度随速度的增加而增大,且中心油膜区域逐渐增加,速度参数对油膜压力影响较大,油膜压力随着速度的增加而升高,颈缩现象逐渐出现;油膜压力随着载荷的增大而升高,同时油膜厚度逐渐减小。  相似文献   

13.
研究轧机油膜轴承润滑油混入冷却水形成的油水两相流对轴承等温弹流润滑的影响。建立油水两相流体模型和弹流润滑方程,研究油膜轴承在等温条件下的润滑特性,分析流体润滑膜的压力、膜厚随含水量、滑滚比、轴颈间隙、主轴转速和轧制力的变化关系。结果表明:随着含水量的增加,油水两相流体由油包水流型转化为水包油流型,压力变化不大,膜厚先增加后减小,油包水流型作为润滑剂时润滑性能最优;随着滑滚比和轧机油膜轴承主轴转速的增加,压力减小、膜厚增加,而随着轴颈间隙和外部轧制力的增加,压力增加、膜厚减小。  相似文献   

14.
研究润滑油中混入水后对轧机油膜轴承热弹流润滑的影响。建立油水两相流体的数学模型,以及轧机油膜轴承热弹流润滑的数学方程,利用多重网格法及多重网格积分法对上述方程进行求解,并分析润滑膜压力、膜厚随含水量、主轴转速、轧制力的变化关系。结果表明:与纯油润滑相比,油水两相流体润滑具有更好的润滑特性,且随着含水量的增加,膜厚增大,承载能力增强;随着主轴转速的增加,膜厚增加,承载能力减小;随着轧制力的增加,膜厚减小,承载能力增强。在油水两相流润滑条件下,热效应对于轧机油膜轴承弹流润滑的影响不能忽略。  相似文献   

15.
基于高速铁路客车轴箱系统多界面接触力学分析模型,在轴箱轴承工况条件下,分析轴箱轴承滚动体与内、外圈间的接触载荷分布情况;建立高速铁路客车轴箱双列圆锥滚子轴承脂润滑弹流模型,并采用有限差分法数值解法。数值计算结果与最小膜厚公式获得的最小膜厚度进行比较,而最大润滑压力与相应的赫兹应力进行了比较。结果表明,在给定运行工况条件下,随着运行速度的增大,轴承滚道润滑接触形成的油膜压力减小,油膜增大;而当轴承载荷增大时,其油膜厚度减小,润滑压力增大。  相似文献   

16.
建立旋滑条件下椭圆接触弹流润滑的数学模型,用多重网格法求得该条件下的完全数值解,研究速度、载荷、偏心距和椭圆比对油膜厚度、形状和压力的影响。结果表明,偏心距较小时,油膜厚度和形状都与普通弹流有明显的不同;速度、载荷和椭圆比增加及偏心距减小,均会导致接触区两侧最小膜厚的差值增大,油膜形状的非对称性增强;速度、椭圆比增加,油膜厚度增加,接触区压力减小,载荷增加或偏心距减小,油膜厚度减小,接触区压力增加。  相似文献   

17.
指数率流体热弹流润滑分析   总被引:3,自引:0,他引:3  
应用多重网格技术,求得了指数率非牛顿流体线接触热弹流润滑的数值解,分析了油膜压力、厚度和温度等随流变指数、速度参数、滑滚比及载荷参数的变化关系,并与相同工况下的等温解进行了比较。结果表明,随着流变指数的增加,油膜厚度和温度、入口处的当量粘度、最小膜厚、中心膜厚和最大温升均增大,而油膜压力和摩擦因数的变化较小。指数率流体弹流润滑问题的热效应不可忽略;与压缩功项相比,油膜能量方程中的热耗散项对温度的影响最大。同时,无量纲速度参数、滑滚比和载荷参数等均影响热弹流润滑特性。  相似文献   

18.
《机械传动》2016,(1):119-123
建立了考虑表面织构的滑动轴承的弹流润滑几何模型,对考虑圆弧形凹坑、矩形凹坑和直角-三角形凹坑的水润滑飞龙轴承的弹流性能进行了数值分析。结果表明,压力与膜厚在凹坑处均出现波动,压力峰值和最小膜厚减小;滑滚比增大,最小膜厚减小,圆弧形凹坑的最小膜厚大于矩形凹坑的,远远大于直角-三角形凹坑的最小膜厚;随着轴承表面凹坑深度的增加,压力波动不明显;膜厚随着凹坑深度的增大,波动幅度增大,最小膜厚减小;直角三角形凹坑的轴承最不利于润滑。  相似文献   

19.
基于弹性流体动力润滑理论的齿轮设计   总被引:2,自引:0,他引:2  
齿轮传动是重要的传动形式之一,良好润滑是保证齿轮正常传动的关键因素.根据所建立的齿轮弹性流体动力润滑数学模型,进行数值求解,分析载荷参数、润滑油粘度对齿轮弹流润滑性能的影响规律.结果表明随着载荷增加,二次压力峰值减少,位置向入口区偏离;而增大齿轮润滑油的粘度,弹流油膜压力影响不是很大,油膜膜厚是逐渐增加的.最后,根据齿轮形成的最小油膜厚度与齿面粗糙度之比(即膜厚比)分析了齿轮传动的润滑状态.  相似文献   

20.
考虑动态特性的角接触球轴承微观热弹流分析   总被引:1,自引:0,他引:1  
建立角接触球轴承的几何和数学模型,综合考虑几种不同轴承材料的弹流润滑性能,求得套圈采用Si3N4、滚球体采用GCr15的角接触球轴承的热弹流润滑完全数值解。在此基础上,进一步考虑角接触球轴承的几项重要基本参数(密合度、钢球数目等)及接触角随轴向载荷的变化对弹流润滑性能的影响。对轴承在承受纯轴向载荷作用下的热弹流润滑完全数值解进行分析,求得在不同轴向载荷下的压力、膜厚及温度分布图。结果表明:套圈、滚球体材料均选用Si3N4和分别选用Si3N4、GCr15两种情况下,最小油膜厚度更大,同样工况下,后者滚球体表面温度更低;密合度的增大有利于润滑油膜的形成;滚球体数量越多,油膜整体压力越小,油膜厚度越大,滚球体、套圈及油膜温度越低;轴向载荷越大,轴承的实际工作接触角越大;接触角的变化对弹流润滑具有很大影响,在考虑了接触角随轴向载荷的变化后得知,接触角增大,油膜的最小膜厚增大,最大压力减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号