首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
纳滤和反渗透膜表面形貌结构、亲疏水性的性质与膜脱盐率、水通量等性能存在一定关系。对几款商用纳滤、反渗透膜进行表面形貌结构、表面粗糙度、亲水性表征。结果表明,纳滤膜表面平整粗糙度低、亲水性强、脱盐率较低,但水通量高。反渗透膜表面存在大量疏松的峰谷结构,比纳滤膜粗糙度更大、亲水性强。对比两款海水反渗透膜,推测调整反渗透膜"叶片"大小和数量可调节反渗透膜的脱盐率和水通量性能。  相似文献   

2.
The deposition of non‐Brownian particles from turbulent liquid‐flow onto channel walls is numerically analyzed. The approach combines Lagrangian particle tracking with a kinematic model of the near‐wall shear layer. For nonbuoyant particles, direct interception is the main deposition mechanism and the deposition velocity scales as the particle diameter (in wall units) to the power of 1.7. When wall/particle hydrodynamic interactions are taken into account, the deposition velocity is significantly reduced and the correction factor scales as the cubic root of the wall roughness to particle diameter ratio. For buoyant particles, sedimentation is usually the predominant deposition mechanism and the hydrodynamic interactions significantly affect the deposition velocity when the drainage characteristic time driven by buoyancy is of the order of the particle residence time close to the wall. Last, a wall‐function for the suspended particles is proposed. © 2015 American Institute of Chemical Engineers AIChE J, 62: 891–904, 2016  相似文献   

3.
We studied particle deposition in rough channels, using the W-M fractal function to characterize a large-scale irregular surface with a root-mean-square roughness of 0.5mm. The flow was numerically investigated by Reynolds stress model, and the particles were tracked by a Lagrangian particle model. An analysis of the flow field in a rough channel shows that the roughness enhances the max flow velocity and the pressure drop in the channel. It induces several eddies in the concave of the rough surface. We also compared particle deposition in a rough channel with particle deposition in a smooth channel. This comparison shows that the roughness significantly enhances the particle deposition of small particles, but the enhancement decreases with the increase of particle size. Moreover, the particle deposition ratio decreases with increasing flow velocity.  相似文献   

4.
The hyperfiltration performances of membranes obtained from PTFE films sintered with different granulometric distribution emulsions were studied. It has been possible to show that: (1) large spherical particles lead to high flux, poor rejection membranes, and vice versa for small spherical particles; (2) the particle shape affects the membrane properties. “Stick” shaped particles lead to better rejection properties than the spherical and “fibrillar” ones. An attempt was also made to utilize a PTFE/PMMA porous support to make asymmetric membranes.  相似文献   

5.
This article examines the adsorption of pharmaceuticals on reverse osmosis (RO) and nanofiltration (NF) membranes. The membranes were characterized in terms of Fourier transformation infrared (FTIR) spectra, surface charge, hydrophobicity, pore size distribution, and roughness. Five pharmaceuticals were used to determine their rejection and possible interactions with the membranes. Albendazole, a hydrophobic pharmaceutical, adsorbed on the NF (NF270) and RO (XLE) membranes. FTIR spectra showed significant changes (new peaks/bonds) on the membranes, confirming that adsorption plays an important role in the overall mechanism of rejection in the case of hydrophobic compounds. Hydrophilic pharmaceuticals (sulfaguanidine, trimethoprim, hydrocortisone, and procaine) did not adsorb on the XLE membrane, showing that size exclusion and electrostatic repulsion were both dominant removal mechanisms. This article gives new insights into NF membranes in the treatment of hydrophilic compounds. The results clearly show the adsorption of hydrophilic compounds on the NF membranes since H‐bonds and π–π interactions were observed on their FTIR spectra. Therefore, both the hydrophobic and the hydrophilic adsorption have to be taken into account when considering the removal mechanism, especially in the case of NF membranes. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44426.  相似文献   

6.
Ding HM  Ma YQ 《Nanoscale》2012,4(4):1116-1122
Understanding how nanoparticles interact with cell membranes is of great importance in drug/gene delivery. In this paper, we investigate the interactions between Janus particles and membranes by using dissipative particle dynamics, and find that there exist two different modes (i.e., insertion and engulfment) in the Janus particle-membrane interactions. The initial orientation and properties of Janus particles have an important impact on the interactions. When the hydrophilic part of the particle is close to the membrane or the particle has a larger section area and higher hydrophilic coverage, the particle is more likely to be engulfed by the membrane. We also provide insights into the interactions between Janus particles and membranes containing lipid rafts, and find that a Janus particle could easily detach from a membrane after it is engulfed by the raft. The present study suggests a potential way to translocate Janus particles through membranes, which may give some significant suggestions on future nanoparticle design for drug delivery.  相似文献   

7.
During optical glass polishing, a number of interactions between the workpiece (i.e., glass), polishing slurry, and pad can influence the resulting workpiece roughness at different spatial scale lengths. In our previous studies, the particle size distribution of the slurry, the pad topography, and the amount of material removed by a single particle on the workpiece were shown to strongly correlate with roughness at AFM scale lengths (nm‐μm) and weakly at μ‐roughness scale lengths (μm‐mm). In this study, the polishing slurry pH and the generation of glass removal products are shown to influence the slurry particle spatial and height distribution at the polishing interface and the resulting μ‐roughness of the glass workpiece. A series of fused silica and phosphate glass samples were polished with various ceria and colloidal silica slurries over a range of slurry pH, and the resulting AFM roughness and μ‐roughness were measured. The AFM roughness was largely invariant with pH, suggesting that the removal function of a single particle is unchanged with pH. However, the μ‐roughness changed significantly, increasing linearly with pH for phosphate glass and having a maximum at an intermediate pH for fused silica. In addition, the spatial and height distribution of slurry particles on the pad (as measured by laser confocal microscopy) was determined to be distinctly different at low and high pH during phosphate glass polishing. Also, the zeta potential as a function of pH was measured for the workpiece, slurry, and pad with and without surrogate glass products (K3PO4 for phosphate glass and Si(OH)4 for silica) to assess the role of interfacial charge during polishing. The addition of K3PO4 significantly raised the zeta potential, whereas addition of Si(OH)4 had little effect on the zeta potential. An electrostatic DLVO three‐body force model, using the measured zeta potentials, was used to calculate the particle–particle, particle–workpiece, and particle–pad attractive and repulsive forces as a function of pH and the incorporation of glass products at the interface. The model predicted an increase in particle–pad attraction with an increase in pH and phosphate glass products consistent with the measured slurry distribution on the pads during phosphate glass polishing. Finally, a slurry “island” distribution gap (IDG) model has been formulated which utilizes the measured interface slurry distributions and a load balance to determine the interface gap, the contact area fraction, and the load on each slurry “island”. The IDG model was then used to simulate the workpiece surface topography and μ‐roughness; the results show an increase in roughness with pH similar to that observed experimentally.  相似文献   

8.

Understanding the fate of particles indoors is important for human health assessment because deposited particles, unless resuspended, cannot be inhaled. To complement studies in real buildings, where control of variables is often difficult, an experimental test chamber facility (8 m 3 ) was designed to study particle deposition under well-stirred conditions using monodisperse tracer aerosol particles in the range of 0.7 to 5.4 w m. The use of neutron-activatable tracers facilitated simultaneous surface sampling and aerosol concentration decay measurements. Aerosol deposition on both smooth surfaces and regular arrays of three-dimensional roughness elements under 3 different airflow speeds was investigated in the test chamber.It was expected that the texture of the chamber surface would significantly influence particle deposition, but some counterintuitive results were observed: under the lowest airflow condition and for the smallest particle size, particle deposition onto rough samples was found to be less than on the corresponding smooth surfaces. The ratio of particle deposition on rough surfaces relative to smooth surfaces increased with particle size and magnitude of airflow. For the largest particle size and airflow speed, particle deposition on the rough surfaces exceeded that on the smooth surfaces by a factor of 3.  相似文献   

9.
Collisional motion of inelastic rough spheres is analyzed on the basis of the kinetic theory for flow of dense, slightly inelastic, slightly rough sphere with the consideration of gas–solid interactions. The fluctuation kinetic energy of particles is introduced to characterize the random motion of particles as a measure of the translational and rotational velocities fluctuations. The kinetic energy transport equation is proposed with the consideration of the redistribution of particle kinetic energy between the rotational and translational modes and kinetic energy dissipation by collisions. The solid pressure and viscosity are obtained in terms of the particle roughness and restitution coefficient. The partition of the random‐motion kinetic energy of inelastic rough particles between rotational and translational modes is shown to be strongly affected by the particle restitution coefficient and roughness. Hydrodynamics of gas–solid bubbling fluidized beds are numerically simulated on the basis of the kinetic theory for flow of rough spheres. Computed profiles of particles are in agreement with the experimental measurements in a bubbling fluidized bed. The effect of roughness on the distribution of energy dissipation, kinetic energy, and viscosity of particles is analyzed. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

10.
The adsorption behavior of perfluorinated compounds (PFCs), of various chain lengths and two different functional groups, on widely used thin‐film composite polyamide membranes has been investigated. Three commercially available polyamide membranes and two classes of PFCs were evaluated: Dow‐Filmtech BW30, NF90, and NF270 membranes; perfluorosulfonic and perfluoroalkanoic acid with 5, 7, 9, and 11 carbon atoms. The adsorption of PFCs on the membranes strongly depended on the active skin‐top layer material of the membranes, solution chemistry, and structure of PFCs. The piperazine based NF270 membrane showed higher adsorption of PFCs compared to BW30 and NF90 membranes (FT‐30 type membranes). The BW30 membrane, which has a coating layer of aliphatic carbons and hydroxyl groups on the surface of the polyamide substrate, had less interaction with PFCs than the NF90 polyamide membrane had. The adsorption of PFCs increased with increasing ionic strength, decreasing pH, and in divalent ion solutions. PFCs with longer chain lengths and more hydrophobic functional groups showed more attractive interactions with thin‐film composite membranes and, thus, greater adsorption on the membranes. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
《分离科学与技术》2012,47(16):3569-3584
Abstract

Homogeneous alumina membranes fouled by polystyrene latex particles at different pH values and ionic strengths were subjected to ultrasonic cleaning. Cleaning was more effective at high and low pH than at neutral pH. At low pH values, less repulsive particle‐particle interactions resulted in the removal of millimeter‐scale aggregates and highly effective cleaning. At near‐neutral pH, stronger repulsive particle‐particle interactions caused detachment to occur as individual particles from the cake layer rather than as flocs, which was a slightly less effective cleaning mechanism. Ultrasonic cleaning of cake layers formed at high ionic strength (>0.3 M KCl) was less effective than cleaning at lower ionic strength (<0.3 M KCl). High ionic strength caused particles to coagulate in solution and deposit as flocs on the membrane surface forming a highly permeable fouling layer. This fouling layer was resistant to ultrasound at the sub‐optimal cleaning conditions used in this study, perhaps due to particle attachment occurring within a primary energy minimum. Membrane cleaning experiments performed with particles of varying size showed that particle size was less important than the surface potential of the particles. For a given mass, particles that possessed the largest surface potential formed the thickest fouling layer, irrespective of particle size, and showed the greatest improvement in flux with ultrasonic cleaning. These results demonstrate that solution conditions influence ultrasonic cleaning of membranes primarily by modifying particle‐particle and particle‐membrane interactions as well as cake layer structure, rather than by impacting the extent or magnitude of cavitation events.  相似文献   

12.
In this study, we present three approaches to predict particle penetration coefficients through a single straight crack in building envelops. The three approaches are an analytical approach, an Eulerian approach, and a Lagrangian approach, respectively. The particle penetration coefficient through an idealized straight crack (smooth inner surfaces) and a strand board crack (rough inner surfaces) were modeled by the three presented approaches. The calculated results were compared with the literature results. The comparison shows that for the idealized smooth crack, the modeled results by the Eulerian approach match the experiments best for the entire range of particle sizes studied among the three approaches. The predicted results by the analytical approach also match the experiments reasonable well. Results modeled by the Lagrangian approach are less satisfied for fine particles (d p < 0.1 μm). Overall, all the three approaches agree well with the experiments for particle sizes ranging from 0.4–1.2 μm. For cracks with rough inner surfaces, the results agree better with the measurements for all the three approaches by adjusting the boundary conditions to incorporate the “intercept” effect of roughness on particle deposition in the cracks.  相似文献   

13.
The pre‐vulcanized large rubber particle (LRP) and small rubber particle (SRP) latices are independently prepared to investigate their film‐forming process and mechanical properties after being cast into films. The surface morphologies and roughness of both LRP and SRP films are found to be dependent on crosslink densities. The networks inside each rubber particle (RP) restrict particle deformation resulting in residual contour of RP within the film surface. For highly crosslinked RP, the collapse of the top surface of the RPs in the LRP films appears to create many “crater‐like” structures within the film surfaces, while they present only protruding particles within the SRP and blend films. This seems to indicate that LRPs are easier to coalesce and form film than SRPs. Additionally, dynamic and mechanical properties and strain‐induced crystallization (SIC) behaviors of the latex films, are effectively enhanced after pre‐vulcanization. The pre‐vulcanized LRP films perform better tensile properties and SIC than the SRP can.  相似文献   

14.
In a previous study, we proved that tailoring the polyamide backbone stiffness is an effective way to fabricate high‐performance polyamide nanofiltration (NF) membranes. However, in the previous study, we mainly focused on the flat membrane and did not consider its chlorine tolerance. In this study, by regulating the aqueous‐phase compositions in the interfacial polymerization process, chlorine tolerance on NF hollow‐fiber membranes was endowed while the membrane performance stayed high. The experimental results show that when the ratio of Piperazine (PIP)–bisphenol F (BPF)/2,2′‐bis(1‐hydroxyl‐1‐trifluoromethyl‐2,2,2‐triflutoethyl)‐4,4′‐methylene dianiline (BHTTM) was 5:1:4, the NF membrane possessed a permeate flux of 21.0 L m?2 h?1 bar?1 and an Na2SO4 rejection up to 90.0%. X‐ray photoelectron spectroscopy analysis also confirmed that the polymerization degree of the PIP–BPF–BHTTM NF membrane was the highest. Moreover, the NF membrane could tolerate active chlorine to over 10,000 ppm h Cl. After the active chlorine treatment, the permeate flux increased over 30.0 L m?2 h?1 bar?1, and the Na2SO4 rejection was about 90.0%. Although the PIP–BHTTM NF membrane also possessed good chlorine tolerance, its permeate flux (after active chlorine treatment) was only 60% of that of the PIP–BPF–BHTTM NF membrane. Therefore, the PIP–BPF–BHTTM NF membrane possessed a combination of high flux and high chlorine tolerance and showed good potential in water treatment in rigorous environments. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46482.  相似文献   

15.
Injecting air into hollow fibers and tubular membranes has been proved to be effective in order to control flux decline caused by concentration polarization and particle deposition. This paper presents a study of the characteristics of filtration with inter‐fiber two‐phase flow. The enhancement of flux by bubbling, the effect of the total superficial velocity and gas and liquid velocities, the effect of fiber spacing and orientation, and the concept of critical flux were investigated. A specially designed crossflow hollow fiber cell connected to a light microscope and video‐camera system has been used to monitor particle deposition on the fibers. The results showed that injecting air could enhance the permeate flux and control the deposition of particles on the membrane fibers. Changes in the hydrodynamics of two‐phase flow considerably affected the filtration resistance caused by reversible fouling but was ineffective for the resistance caused by irreversible fouling. The extent of deposition was mainly controlled by the flux level in the range of wall shear rates examined. A critical flux of about 10 dm3 m−2 h−1 was identified through direct observation of particle deposition on fibers. This value correlated with the flux at which the irreversible fouling became negligible. These results should be significant for optimizing the operation of submerged membrane bioreactor wastewater systems in which bubbling is used as a hydrodynamic technique to improve the performance of the membrane process. © 2000 Society of Chemical Industry  相似文献   

16.
BACKGROUND: The effects of shear rate induced molecular orientation in polymeric based asymmetric membranes on performance, structural details, key properties, morphologies and pore size distribution were studied. Asymmetric membranes fabricated at five different potential shear rates ranging from 93.33–466.67 s?1 were evaluated based on nanofiltration test. The use of Spiegler–Kedem, steric‐hindrance pore and Teorell–Meyers–Sievers models enables an assessment to be made of the relationship between shear rates and membranes properties. RESULTS: Experimental and modeling results show that there is a significant correlation between shear and membrane characteristics, whereby as shear rate increases, the separation performances of nanofiltration membranes increase until an optimum (critical) level of shear is achieved. Beyond the optimum shear, the deterioration in membrane performance suggests that there exists an optimum shear rate which produces optimal structural details, key properties, morphologies and pore size distributions. CONCLUSIONS: Results showed that a skinned‐oriented highly selective charged asymmetric low pressure nanofiltration (ALP‐NF) membrane was successfully developed. The optimum shear rate (critical shear) was found to be 233.33 s?1. At the optimum shear rate, the fabricated ALP‐NF membranes produced the finest properties, morphology and narrowest pore distributions. The positive improvement in performance properties of ALP‐NF membrane provides the potential for producing a highly selective NF membrane for different applications in the future. Copyright © 2011 Society of Chemical Industry  相似文献   

17.
Glass optics with ultra‐low roughness surfaces (<2 Å rms) are strongly desired for high‐end optical applications (e.g., lasers, spectroscopy, etc.). The complex microscopic interactions that occur between slurry particles and the glass workpiece during optical polishing ultimately determine the removal rate and resulting surface roughness of the workpiece. In this study, a comprehensive set of 100 mm diameter glass samples (fused silica, phosphate, and borosilicate) were polished using various slurry particle size distributions (PSD), slurry concentrations, and pad treatments. The removal rate and surface roughness of the glasses were characterized using white light interferometry and atomic force microscopy. The material removal mechanism for a given slurry particle is proposed to occur via nano‐plastic deformation (plastic removal) or via chemical reaction (molecular removal) depending on the slurry particle load on the glass surface. Using an expanded Hertzian contact model, called the Ensemble Hertzian Multi‐gap (EHMG) model, a platform has been developed to understand the microscopic interface interactions and to predict trends of the removal rate and surface roughness for a variety of polishing parameters. The EHMG model is based on multiple Hertzian contacts of slurry particles at the workpiece–pad interface in which the pad deflection and the effective interface gap at each pad asperity height are determined. Using this, the interface contact area and each particle's penetration, load, and contact zone are determined which are used to calculate the material removal rate and simulate the surface roughness. Each of the key polishing variables investigated is shown to affect the material removal rate, whose changes are dominated by very different microscopic interactions. Slurry PSD impacts the load per particle distribution and the fraction of particles removing material by plastic removal. The slurry concentration impacts the areal number density of particles and fraction of load on particles versus pad. The pad topography impacts the fraction of pad area making contact with the workpiece. The glass composition predominantly impacts the depth of plastic removal. Also, the results show that the dominant factor controlling surface roughness is the slurry PSD followed by the glass material's removal function and the pad topography. The model compares well with the experimental data over a variety of polishing conditions for both removal rate and roughness and can be extended to provide insights and strategies to develop practical, economic processes for obtaining ultra‐low roughness surfaces while simultaneously maintaining high material removal rates.  相似文献   

18.
Abstract

Extractant‐assisted synthesis of platinum and palladium polymer‐stabilized metal nanoparticles (PSMNP) was carried out for the first time. The synthesis included the following sequential steps: a) loading of extractant (tributyl‐phosphine oxide, TBPO) with the desired metal ion; b) preparation of a membrane “cocktail” by mixing a metal‐containing extractant, solution of the polymer (PVC or polysulfone) and plastisizer; c) membrane deposition and metal reduction inside the membrane (intermatrix synthesis of PSMNP) by using either a chemical or an electrochemical reduction technique. The electro conductivity of the resulting polymer‐metal nanocomposite membrane appeared by several orders of magnitude higher than that of the metal‐free polymer. The mass‐exchange properties of PSMNP‐containing membranes were shown to depend on both the type of the polymer and the membrane deposition technique.  相似文献   

19.
Poly(4‐methyl‐1‐pentene) (PMP) hollow fibers were prepared and fabricated into gas separation or microporous membranes by the melt‐spun and cold‐stretched method. PMP resin was melt‐extruded into hollow fibers with cold air as the cooling medium. The effects of take‐up speed and thermotreatment on the mechanical behavior and morphology of the fibers were investigated. Scanning electronic microscope (SEM) photos were used to reveal the geometric structure of the section and surface of the hollow fibers. It was found that the original fiber had an asymmetric structure. A “sandwich” mode was used to describe the formation of this special fine structure. And a series of PMP hollow‐fiber membranes were prepared by subsequent drawing, and it was found that there was a “skin–core” structure on the cross section of these hollow‐fiber membranes. Asymmetric or microporous PMP hollow‐fiber membranes could be obtained by controlling posttreatment conditions. The morphology of these membranes were characterized by SEM, and the gas (oxygen, nitrogen, and carbon dioxide) permeation properties of the membranes was measured. The results indicate that the annealing time of the original fiber and the stretching ratio were the key factors influencing the structure of the resulting membrane. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2131–2141, 2006  相似文献   

20.
New types of composite anion‐exchange membranes were prepared by blending of suspension‐produced poly(vinyl chloride) (S‐PVC) and poly(styrene‐co‐butadiene), otherwise known as styrene–butadiene rubber (SBR), as binder, along with anion‐exchange resin powder to provide functional groups and activated carbon as inorganic filler additive. Also, an ultrasonic method was used to obtain better homogeneity. In solutions with mono‐ and divalent anions, the effect of activated carbon and sonication on the morphology, electrochemical properties and selectivity of these membranes was elucidated. For all solutions, ion‐exchange capacity, membrane potential, permselectivity, transport number, ionic permeability, flux and current efficiency of the prepared membranes initially increased on increasing the activated carbon concentration to 2 wt% in the casting solution and then began to decrease. Moreover, the electrical resistance and energy consumption of the membranes initially decreased on increasing the activated carbon loading to 2 wt% and then increased. S‐PVC‐blend‐SBR membranes with additive showed a decrease in water content and a slight decrease in oxidative stability. Also, these membranes showed good monovalent ion selectivity. Structural images of the prepared membranes obtained using scanning optical microscopy showed that sonication increased polymer‐particle interactions and promoted the compatibility of particles with binder. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号