首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 966 毫秒
1.
杨光维  陈兆平  柳向椿  徐超 《炼钢》2019,35(6):31-34,45
采用蔡司电镜+INCA软件对宝山钢铁股份有限公司齿轮钢VD镇静过程钢中夹杂物进行自动检测,发现大于5μm夹杂物数量与大于10μm夹杂物数量成正相关,而且随着镇静时间的增加先减少后增加。VD镇静过程最大夹杂物主要是球状CaO-Al_2O_3+MgO-Al_2O_3复合夹杂物,而且随着夹杂物中CaO-Al_2O_3面积占比的增加,最大夹杂物尺寸增大。建议镇静时间控制在15 min左右。  相似文献   

2.
文章通过工业实验研究了向A572.Gr65钢中加入稀土后对其夹杂物、组织和性能的影响。结果表明,加入稀土之前,钢中夹杂物主要是Al_2O_3和Al_2O_3-Ca O,尺寸约为5μm左右,加入稀土之后,夹杂物变成不足2μm的球状RE_2O_2S夹杂物。并且通过热力学、动力学计算表明,添加稀土之后,钢中最容易生成的夹杂物是RE_2O_2S,而RE~(3+)和Al~(3+)在RE_2O_2S·Al_2O_3中间层中的扩散速率为稀土变质夹杂物的限制性环节。加入稀土后,热轧板微观组织有所细化;冲击和拉伸性能随稀土含量的增加而提高。  相似文献   

3.
吕沙  吴光亮 《钢铁》2015,50(7):32-37
 对采用“EBT→LF→VD”工艺路线生产50Cr5MoV锻钢轧辊炼钢过程的全氧质量分数和夹杂物类型与数量进行了分析。结果表明:LF精炼后钢液中[w(T[O])]平均为0.004 7%,VD出站[w(T[O])]为0.001 4%,中间包[w(T[O])]为0.001 55%,铸坯[w(T[O])]为0.001 8%,轧材中[w(T[O])]降低至0.001 0%。LF精炼初期,钢中夹杂物主要是不规则的Al2O3夹杂,其中96.75%的夹杂物尺寸小于10 μm。LF精炼结束后,大量夹杂物转变成以CaO-Al2O3-SiO2为主要成分的0~1 0 μm复合氧化物夹杂。钢水从VD真空精炼炉向中间包转移过程中,由于保护性浇注效果差,二次氧化严重造成钢水夹杂逐渐增多,其中夹杂物主要为球形的[mCaO·nAl2O3]复合夹杂物。铸坯中99.65%的夹杂物尺寸小于10 μm,其中大部分为球形钙铝酸盐夹杂物,还有少量球状硅铝酸钙复合夹杂物。轧材中98.77%的夹杂物尺寸小于10 μm。通过对炼钢过程中各工序的工艺优化,可实现对夹杂物的有效控制, 从而确保50Cr5MoV合金铸钢的产品质量。  相似文献   

4.
肖鸿光 《特殊钢》2021,42(4):51-55
衡钢采用硅钙脱氧工艺、控制EAF钢水中全氧含量、LF渣系中Al2O3含量、控制精炼时间≥40 min、VD真空脱气、软吹时间≥20 min、保护浇注防止钢水二次氧化和促使钢中夹杂物上浮等应用工艺措施,可有效降低钢水中B类夹杂物Al2O3数量和尺寸以提高钢的洁净度。生产实践表明:油缸钢生产中精炼炉控制钢水[Al]s≤0.004%、T[O] ≤0.002 0%、精炼终渣(FeO) ≤0.8%、碱度(R)控制在2.0~3.2有利于B类夹杂物控制。当B类夹杂物不超过1.0级有利于控制刮滚工艺"白点"的产生。  相似文献   

5.
采用夹杂物自动扫描分析仪Aspex对轴承钢炉外精炼过程中的非金属夹杂物进行大面积扫描,系统研究了炉外精炼过程钢液纯净度变化,对关键工序进行氧、氮含量分析,同时利用"无水电解"提取各个工序夹杂物,以便观察夹杂物三维形貌,以指导生产实践。研究表明,LF-VD过程,夹杂物经历了Al_2O_3→MgO·Al_2O_3→CaO-MgO-Al_2O_3演变。LF精炼初期,钢液中形成大量Al_2O_3夹杂物,随着LF精炼地进行,钢液中逐渐形成MgO·Al_2O_3、钙铝酸盐、CaO-MgO-Al_2O_3等复合夹杂物,VD真空后,钢液中形成大量CaO-MgO-Al_2O_3夹杂物。LF精炼初期,钢液中夹杂物数量密度达到16.25个/mm~2,随着LF精炼的进行,夹杂物数量逐渐减少,VD破空后钢液中夹杂物数量密度降低为6.87个/mm~2,随着静搅地进行,钢液中夹杂物数量密度逐渐降低,VD吊包夹杂物数量密度增加,可能是卷渣造成。  相似文献   

6.
针对重轨钢“BOF→LF→VD→CC”生产工艺中不同时机添加稀土的效果进行工业试验研究,通过对不同工序加入稀土的重轨钢铸坯进行取样,对样品的稀土含量及夹杂物尺寸、数密度、形貌等进行分析。结果表明:VD后加稀土生产的铸坯中稀土收得率为11.73%,高于LF后加稀土生产的铸坯中稀土收得率2.83%。结合全流程氧含量分析结果,表明稀土加入钢中后就参与脱氧反应,反应产物上浮去除;稀土的加入可有效降低钢中夹杂物尺寸,相较于不加稀土的重轨钢,LF后加稀土和VD后加稀土生产的稀土重轨钢铸坯样品中,夹杂物长度平均值分别由9.28μm降低至7.91、1.42μm,平均宽度由5.71μm降低至4.81、2.27μm;稀土的加入可降低夹杂物评级,对A类、B类、D类夹杂物评级降低效果明显,其中VD后加稀土生产的重轨钢铸坯样品夹杂物评级更优。通过不同工序加入稀土试验对比发现,VD后加稀土的工艺更能提高重轨钢夹杂物变质的能力。SEM及EDS分析结果表明,稀土主要存在于硅钙镁铝系夹杂物中,并使硅钙镁铝系夹杂物由水滴形变为球形,表面发生硫的富集;对硫化锰夹杂分析结果表明,VD后加稀土工艺可使钢中硫化锰与硅钙镁铝系夹杂...  相似文献   

7.
本文从金相定量和定性方面来研究在转炉的工业生产条件下,稀土元素对60Si2Mn钢夹杂物的影响。通过光学显微镜观察,扫描电镜能谱分析,电子探针和电解夹杂分析表明:当钢中[RE]:[S]大于2时,钢中夹杂物为β-RE_2S_3、Υ-RE_2S_3,RE_2O_3S和REAlO_3等稀土夹杂物,延伸的硫化锰夹杂基本消失。在转炉生产的60Si2MnRE钢中没有发现单一的稀土氧化物、稀土硫化物和稀土中间相。当稀土加入量为0.15%时,钢的纯洁度受到影响。通过Leitz T,A,s,图像仪对夹杂物的几何特征定量测定表明:加稀土后,夹杂物的形状系数L/D趋近于1,夹杂物近于球形。由于稀土改变了夹杂物的类型、组成、形态和分布,因而60Si2MnRE钢的疲劳寿命比60Si2Mn钢高30%至一倍。  相似文献   

8.
《特殊钢》2017,(2)
试验X52管线钢(/%:0.070~0.079C,0.22Si,1.29~1.32Mn,0.008~0.009P,0.002S,0.028A1,0.001 6~0.001 7T[0],0.005 3~0.006 5N)的冶金流程为铁水预处理-220 t BOF-LF-VD-230 mm板坯连铸。主要工艺为BOF出钢加铝粒,LF精炼渣主要组成为(/%):54.41~58.54CaO,7.66~8.42SiO_2,22.57~24.69Al_2O_3.4.15~4.58MgO,0.78~2.89FeO;VD后喂钙线处理。利用电子束和X-射线技术的ASPEX自动扫描电镜研究了该钢冶炼过程夹杂物的变化。结果表明,LF进站时钢中夹杂物为簇群状或颗粒状Al_2O_2,LF终点Al_2O_2转变为球状CaO-MgO-Al_2O_3系夹杂物,钙处理后转变为球状CaO-Al_2O_2-CaS系。VD真空处理过程夹杂物数量从30~35个/mm~2降至7~15个/mm~2、T[O]和[N]大幅降低至12×10~(-6)~13×10~(-6)和41×10~(-6)~48×10~(-6)。软吹搅拌到中间包,钢中夹杂物数量剧增至33爪/mm~2。夹杂物平均尺寸在VD破空后达到最大,为2.6~3.6μm,中间包则减小到1.9~2.1μm。喂线及软吹搅拌过程钢中T[O]和[N]都有增加,说明发生了二次氧化。LF精炼、VD及钙处理后钢中S含量降至16×10~(-6)。中间包覆盖剂中(SiO2)和(FeO+MnO)太高会导致中间包钢水回硫。  相似文献   

9.
对82B硬线钢中夹杂物的形成条件进行了热力学理论计算,结果表明:采用低碱度渣时,钢液中[Al]S随着夹杂物中wCaO/wSiO2比值和Al_2O_3含量增大而增加,为把CaO-SiO2-Al_2O_3夹杂物控制在塑性区,钢液中[Al]S应小于6×10~(-6)。实际控制结果表明,按照热力学计算结果控制精炼炉渣成分(控制顶渣中的Al_2O_3含量低于10%),同时保证充足的软吹条件(合适的氩气流量和大于15 min的软吹时间),可以达到夹杂物控制目标。  相似文献   

10.
为定量研究稀土元素对含铜锡铁素体不锈钢中变质夹杂物、净化钢液的作用,基于FactSage热力学软件最小吉布斯自由能原理,模拟计算不同稀土添加量条件下钢中夹杂物转变规律。同时,结合实验室小坩埚热模拟试验发现,随着稀土质量分数的增加,含锡铜铁素体不锈钢中Al_2O_3夹杂变质成硬度较低的CeAlO_3,MnS夹杂逐渐转变成CeS。钢中夹杂物逐渐转变为球状的稀土类夹杂,夹杂物尺寸为1~3μm,同时钢中夹杂物总量有所下降。当钢中稀土质量分数增加到0.057%时,CeAlO_3进一步转化成Ce_2O_3,钢中MnS也完全转变成CeS。然而,夹杂物尺寸、数量有所增加,反而使钢液进一步被污染。因此,从夹杂物控制角度考虑,试验钢中稀土最优添加量为0.035%。  相似文献   

11.
 对于一些采用硅锰脱氧冶炼工艺的特殊钢,为保证钢水洁净度,常会选择较长时间的LF软吹处理,导致过程能耗增加。通过工业试验,借助FEI Explorer 4自动扫描电镜检测,研究不同LF精炼软吹时间对硅脱氧弹簧钢55SiCr铸坯氧化物夹杂成分、数量的影响;并采用夹杂物极值统计法,对比评价不同LF精炼软吹时间对应成品盘条横截面最大夹杂物尺寸控制情况。结果表明,在LF软吹10 min与软吹40 min 两种工艺条件下,铸坯中尺寸大于5 μm的氧化物夹杂成分接近,均在CaO-SiO2-Al2O3相图中假硅灰石、钙长石和钙铝黄长石共晶低熔点区,其中软吹10 min工艺铸坯氧化物夹杂组成落入低熔点区的数量所占比例更大。LF软吹10 min与软吹40 min铸坯中尺寸大于5 μm的氧化物夹杂数量密度分别为11.70个/100 mm2和14.59个/100 mm2,尺寸大于15 μm 的氧化物夹杂数量密度分别为0.53个/100 mm2和1.65个/100 mm2,LF软吹10 min工艺铸坯大尺寸氧化物夹杂数量密度略低于LF软吹40 min工艺。当预测面积为30 000 mm2时,两种LF软吹时间对应成品盘条横截面最大夹杂物尺寸分别为27.1 μm和28.1 μm,盘条最大夹杂物尺寸控制无显著差别。结合硅锰脱氧钢中大尺寸低熔点CaO-SiO2-Al2O3系夹杂物主要源自钢包渣乳化卷入,具有与钢水和氩气泡界面接触角很小、难以通过吹氩上浮去除的特点,建议硅锰脱氧钢LF软吹过程按短时间快节奏进行控制。  相似文献   

12.
杨光维  郝鑫  杨叠  王新华  黄福祥  王万军 《钢铁》2014,49(11):31-35
 研究了EAF→LF→VD→软搅→CC工艺生产GCr15轴承钢冶炼过程钢中T[O]及非金属夹杂物的变化情况。通过将电炉出钢碳质量分数控制为0.2%~0.4%、出钢加铝强脱氧及造预精炼渣、LF精炼过程造高碱度强还原性炉渣、VD真空强搅拌及防止中间包二次氧化,可以生产[w(T[O])]等于8×10-6的轴承钢。在炉外精炼过程中夹杂物经历了Al2O3→MgO·Al2O3→CaO-MgO-Al2O3演变。LF精炼过程夹杂物平均尺寸减小,经过VD真空处理后尺寸增加,接着在软搅和中间包过程继续减小。利用VD真空处理可以去除高达74%的夹杂物。  相似文献   

13.
某钢厂采用EBT—LF—VD—VC工艺生产50Cr5MoV轧辊钢,对该钢种LF精炼过程中氧、氮变化及夹杂物数量、粒径分布、类型进行了分析。结果表明:LF精炼后,钢液中w(T.O)由86×10-6降至55×10-6;w(N)几乎没变化,由57×10-6降至55×10-6,含有大量的TiN夹杂;经钙处理及软吹处理后,钢中夹杂物转变为CaO-MgO-Al2O3类和钙铝酸盐类,但钢液中仍含有较多的Al2O3夹杂,夹杂物数量约为20.28个/mm2。对精炼渣进行优化并采用埋弧操作和增大吹氩流量,可促进夹杂物的去除。  相似文献   

14.
文章研究了在LD-LF-RH-CC工艺路径下添加稀土铁合金的炼钢生产技术。研究结果表明,与不添加稀土的钢种相比,试制工艺生产的稀土钢氧含量要明显低于常规钢种。当中间包中的钢水S含量较低时,其夹杂物主要为2.0μm以下的RE_2O_2S-Ca O和RE_2O_2S、RE_2O_2S-Al_2O_3,是亚微米级含RE夹杂物。水口结瘤物质主要为钢中稀土脱氧、稀土的铝酸盐,稀土夹杂聚集粘附是结瘤的主要原因。  相似文献   

15.
对高品质管线钢(钢板)中大尺寸B类夹杂物进行了分析。结果表明,该类夹杂物为CaO-Al2O3,其Al2O3含量为54%~58%。通过对精炼过程钢中夹杂物的分析发现,钢板中大尺寸B类夹杂物的来源为钙处理和软吹后尚未从钢中上浮、去除的夹杂物。对软吹工艺的试验结果表明,软吹时间和软吹氩气流量对钢中夹杂物的去除都有很大的影响,在适当增加软吹时间的同时采用较小的软吹氩气流量利于钢中夹杂物的上浮、去除及B类夹杂物的控制。  相似文献   

16.
《炼钢》2015,(6)
针对超低氧含量特殊钢中大型非金属夹杂物问题开展了相关工业试验和实验室研究,研究结果表明:1)当钢液w(T.O)低于(13~15)×10~(-6)后,通过LF精炼进一步降低钢液总氧和夹杂物含量变得困难。而RH真空精炼在钢液超低氧含量条件下则具有非常强的进一步降氧和去除夹杂物的能力,将RH精炼时间延长至33 min左右,钢液w(T.O)降至4.7×10-6,尺寸1.5μm以上夹杂物数量减少至1.77个/mm~2。2)超低氧特殊钢中夹杂物在钢液二次精炼过程会经历"Al_2O_3→MgO-Al_2O_3→CaO-MgOAl_2O_3→CaO-Al_2O_3"转变,其中Al_2O_3向MgO-Al_2O_3系夹杂物转变是由于钢液[Mg]与Al_2O_3夹杂物的反应,而[Mg]主要来源于[Al]还原钢包包衬MgO的反应。3)在w(T.O)=5.9×10-6的特殊钢连铸圆坯试样中检测到尺寸100~330μm的大型簇群状CaO-MgO-Al_2O_3系夹杂物,构成簇群的微小颗粒与钢液中微小夹杂物类似,表明是在连铸过程由钢液中微小夹杂物聚合而成。4)经过RH精炼,钢中夹杂物绝大多数已转变为液态CaO-Al_2O_3系夹杂物,而连铸过程发生的二次氧化,会将钢中夹杂物转变为高熔点的CaO-Al_2O_3系、MgO-Al_2O_3系或CaO-MgO-Al_2O_3系固态夹杂物,固态夹杂物更易聚合为大型夹杂物,因此在超低氧特殊钢生产中必须非常严格地控制二次氧化。  相似文献   

17.
使用Si-Ca和Si_Al-Ba两种不同脱氧剂对EAF→LF→VD→MC工艺生产的高压锅炉管钢P12进行脱氧,并对其各工艺环节进行取样,研究各工序钢中总氧和夹杂物数量、尺寸的演变规律以及锻材中夹杂物组成、铝类夹杂物含量和平均粒径.结果表明:VD处理后2种脱氧剂都能将钢中总氧质量分数控制在20×10-6以下;Si-Al-Ba脱氧后各工序的夹杂物数量要少于Si-Ca脱氧;两者在浇铸过程中都发生明显的二次氧化,但Si-Al-Ba脱氧的钢液二次氧化更为严重.  相似文献   

18.
《炼钢》2021,37(4):49-57
采用热态试验对半钢冶炼Ti-IF钢的非金属夹杂物进行研究,并就提高钢水洁净度和降低夹杂物尺寸进行工艺优化。研究表明:LF进站时夹杂物为球状FeO-MnO,LF出站时主要夹杂物为包裹状、簇状MgO-FeO-MnO-Al_2O_3,RH脱碳结束后主要为球状、纺锤体状和不规则状FeO-Al_2O_3,RH铝脱氧3 min后主要为三角状、类球形和团簇状Al_2O_3,Ti合金化3 min后主要为六边形状TiO_2-Al_2O_3、纺锤体状和近似菱状Al_2O_3,RH出站为球形TiO_2-Al_2O_3、纺锤体状和近似菱状Al_2O_3夹杂物,铸坯中主要为菱形TiN、类球形Al_2O_3和不规则形Al_2O_3-TiN。原工艺影响Ti-IF钢表面质量和钢液纯净度的非金属夹杂物主要是大尺寸Al_2O_3(大于等于15μm)。通过优化氧枪喷头、RH工艺参数和中间包流场,铸坯中w(T.O)降至16.3×10~(-6),最大非金属夹杂物尺寸降至9.5μm, Ti-IF钢水洁净度得到显著提高。  相似文献   

19.
通过氩站、LF、VD、中间包、及铸坯的系统取样,采用扫描电镜(SEM)结合能谱(DES)自动扫描分析功能(可获取试样大面积范围内的夹杂物信息),对某钢厂BOF-Argon station-LF-VD-CC工艺生产20CrMnTi钢中夹杂物在各工序的种类、数量、化学成分进行研究。结果表明:随着工艺的进行,夹杂物在氩站出站时以Al_2O_3为主;LF精炼后,夹杂物转变成熔点较低、易于上浮的MgO-Al_2O_3、MgO-Al_2O_3-CaO;VD结束后,主要有MgO-Al_2O_3、CaOAl_2O_3、CaO-MgO-Al_2O_3三大类夹杂物;夹杂物数量在氩站结束时最多,中间包和铸坯中夹杂物数量最少,同时夹杂物状变也由不规则变为球形,说明LF、VD有着较好的精炼效果。通过对该厂夹杂物随冶炼工艺演变的研究发现:该厂夹杂物控制水平能够满足一般齿轮钢的质量要求,并为将来冶炼高品质齿轮钢打好基础。  相似文献   

20.
研究了含铈IF钢中铈夹杂物生成的热力学规律,以及铈对钢液中Al_2O_3夹杂物的变质机理,并采用扫描电子显微镜及能谱仪观察和分析了IF钢和含铈IF钢中的主要夹杂物,结果表明,铈在氧、硫含量均小于0.0006%的超低氧、硫IF钢中仍能够同时脱氧、脱硫、脱磷,具有净化钢液作用;含铈IF钢中的稀土夹杂物主要为Ce_2O_3、Ce_2O_2S、CeAlO_3夹杂物,各稀土夹杂物呈球状或椭球状,且尺寸均小于2μm,钢中未发现稀土硫化物夹杂;含铈IF钢中的Al_2O_3夹杂物被铈变质为尺寸较小的CeAlO_3夹杂物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号