首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 906 毫秒
1.
采用生物处理/厌氧氨氧化/物化处理组合工艺处理垃圾渗滤液,系统能稳定运行且对污染物的去除效果较好.组合工艺对垃圾渗滤液中COD的平均去除率为94.97%,出水COD平均为47.5 mg/L;对NH3 -N的平均去除率为98.53%,出水NH3 -N平均为14.62 mg/L;对TN的平均去除率为98.23%,出水TN平均为21.3 mg/L;对TP的平均去除率为69.82%,出水TP平均为2.22 mg/L.渗滤液出水COD、NH3-N、TN、TP浓度均满足《生活垃圾填埋场污染控制标准》(GB16889-2008)的一级标准.  相似文献   

2.
短程硝化/厌氧氨氧化联合工艺处理含氨废水的研究   总被引:2,自引:1,他引:1  
在SBR中接种普通好氧活性污泥,通过控制运行条件来实现短程硝化,同时提高厌氧生物转盘系统中厌氧氨氧化的氮负荷,使之与SBR出水中NO2--N的积累量相匹配,并将二者组合形成短程硝化/厌氧氨氧化自养脱氮工艺.处理含氨废水的试验结果表明:在SBR的进水NH4+-N为150~250 mg/L、温度为(28±2)℃、pH值为7~8、DO<1 mg/L的条件下,可实现稳定的短程硝化,NO2--N积累率达85%以上,NH4+-N负荷达0.129 kgN/(kgVSS·d),AOB和NOB的数量之比为103:1.将短程硝化出水加入NH4+-N后作为厌氧氨氧化反应器的进水,在(40±1)℃下可以达到自养脱氮的目的,对NH4+-N、NO2--N和TN的去除率分别达86%、97%和90%以上,TN容积负荷为0.488 kgN/(m3·d).  相似文献   

3.
SBR法处理垃圾渗滤液与粪水的混合液   总被引:1,自引:0,他引:1  
采用有效容积为1200m3的SBR反应器处理垃圾渗滤液与市政粪水的混合液,探讨了对两者进行混合处理的可行性.反应器对COD、BOD5、TN、NH+4-N和TP的平均去除率分别达到92.12%、98.48%、81.45%、99.68%和96.52%,相应的平均去除负荷分别为145.75、51.51、22.73、25.04和0.53g/(kgSS·d).当控制C/N在5.0~6.5之间时,对TN的平均去除率可达81.45%,对COD的平均去除率为92.46%,出水COD≤450 mg/L、BOD5≤30 mg/L、NH+4-N≤10mg/L、TN≤180mg/L、TP≤1.0mg/L、色度≤320倍.SBR反应器对垃圾渗滤液和粪水的混合处理效果较好,粪水的混入可有效提高垃圾渗滤液的可生化性以及反应器对TN和TP的去除率,有效解决了垃圾渗滤液中TN去除的难题;同时,反应器内可能存在比短程硝化反硝化消耗更少碳源的脱氮反应形式,但出水COD浓度仍略高.  相似文献   

4.
采用间歇膨胀复合水解工艺预处理综合城镇污水(B/C值0.3,TN为30~80 mg/L,SS300 mg/L),考察了不同HRT下,水解反应器出水B/C值的变化以及对COD的去除率和污泥浓度。结果表明:在HRT由16 h降低到6.5 h的过程中,水解反应器的B/C变化值由-0.06提高到0.07,而COD去除率由42%降低到22%,在HRT为8 h条件下,B/C变化值和COD去除率分别为0.07和27%。间歇膨胀复合水解池出水经SBR处理后,其COD、NH+4-N、TN分别为65、0.75、17.71 mg/L,而生产性SBR出水的COD、NH+4-N、TN分别为93、16.4、34 mg/L。应用悬浮生物滤池处理生产性SBR池出水,在HRT为2 h、温度为14~19.5℃、进水NH+4-N为21.8~41mg/L条件下,出水NH+4-N为1.6~12.79 mg/L,平均去除率为74.6%,NH+4-N负荷为0.238kg/(m3·d)。可见,间歇膨胀复合水解与悬浮生物滤池工艺适用于综合城镇污水的提标改造。  相似文献   

5.
生物接触氧化法的同步硝化反硝化影响因素研究   总被引:2,自引:0,他引:2  
研究了生物接触氧化法同步硝化反硝化系统中HRT、DO、COD及生物膜厚度对脱氮效率的影响.结果表明:在DO=2.0 mg/L的条件下,出水COD、TN、NH+4-N值随HRT的增加呈下降趋势,在HRT达到8 h时,出水COD、TN、NH+4-N值趋于稳定,去除率分别为94%、55.9%和73.3%;5-DO为2.0~4.0 mg/L范围内,对TN的去除率随着反应器内DO浓度的降低呈上升趋势,保持较好脱氮率的溶解氧为2.5~3.0 mg/L;进水COD为400 mg/L时,系统对TN、NH+4-N的去除率及容积去除率都处在较高水平,对TN的平均去除率达到60%;生物膜厚度对同步硝化反硝化有较大影响,增加生物膜厚度有利于同步硝化反硝化的进行.  相似文献   

6.
以高氨氮垃圾渗滤液为处理对象,通过边进水边曝气的运行方式,同时控制pH≈7、溶解氧在1~2 mg/L,在SBR内成功实现了稳定的亚硝酸型硝化。当进水氨氮浓度为2 134~2 886mg/L、氨氮负荷高达2 kgNH3-N/(m3.d)时,出水氨氮和亚硝酸盐氮分别为400和1 200 mg/L左右,对氨氮的去除率达到80%以上。游离氨(FA)和游离亚硝酸(FNA)对亚硝态氮氧化菌(NOB)的抑制是实现亚硝酸型硝化的关键。另外,系统内高浓度的亚硝酸盐对异养菌的代谢产生了抑制,对TOC的去除率仅为60%左右。  相似文献   

7.
晚期渗滤液短程生物脱氮的实现   总被引:1,自引:0,他引:1  
在SBR反应器中利用游离氨(free ammonia, FA)、游离亚硝酸(free nitrous acid, FNA)对NOB(nitrite oxidizing bacteria, NOB)选择性抑制并耦合实时控制策略处理晚期垃圾渗滤液,成功实现持久稳定的短程生物脱氮,并研究了不同碳氮比及初始pH值对短程生物脱氮的影响。结果表明:通过FA和FNA对NOB的选择性抑制,在线检测反应中pH、DO和ORP数值,利用出现的“氨谷”、“ORP平台”“亚硝酸盐膝”等特征点作为运行操作控制时间点,准确得知反应进程,及时开始下一步操作,获得稳定短程生物脱氮。进水NH4 +-N浓度为108~177.3 mg/L(平均值为138.7 mg/L)时,亚硝积累率一直稳定达90%左右,乙酸钠为碳源时最佳C、N质量比为3,相对于混合液悬浮固体浓度的反硝化速率的平均值达到19.8 mg·g -1·h -1 NOx --N,出水NH4 +-N、NO2 --N、NO3 --N、TN分别小于6、2、1和30 mg/L;初始pH值为8.5时,反硝化速率最大,pH介于7.5~8.5间,反硝化速率差异小于7.3%.  相似文献   

8.
采用一体式A/O工艺处理ABS树脂废水,研究了在好氧区不同的DO浓度下,对COD、TN及NH+4-N的去除效果,通过三维荧光法分析芳香族类有机物的含量变化,以及采用FISH法测定活性污泥中氨氧化菌和亚硝酸盐氧化菌的数量,分析对NH+4-N去除效果变化的原因。结果表明,在总水力停留时间为36 h、回流比为4时,好氧区DO由5 mg/L降至1 mg/L,系统对COD的去除效果不受影响;随着DO浓度的下降,出水TN和NH+4-N浓度逐渐升高,当好氧区DO降至1 mg/L时,出水TN浓度仍满足一级A排放标准,此时出水NH+4-N升高至7.6 mg/L,不能满足一级A排放标准,但氨氧化菌所占比例并未减小(为7.7%),所以低DO浓度下出水氨氮浓度超标的原因并不是活性污泥中缺少氨氧化菌,而是硝化反应速率过低。最后结合对各污染物的去除效果和曝气量,分析得出好氧区DO在2 mg/L左右为较优的操作条件。  相似文献   

9.
针对含高浓度有机物和氨氮的城市垃圾渗滤液,采用UASB/一级AO/二级AO/超滤/反渗滤(RO)工艺处理垃圾渗滤液。原水COD约10 700 mg/L,BOD5约3 650 mg/L,NH3-N约1 150 mg/L,10个月的调试与运行结果表明,该工艺对渗滤液的COD、BOD5、NH3-N的去除率分别为(89%~93.5%)、(99.3%~99.5%)、(99%~99.2%),出水COD≤100 mg/L、BOD5≤30 mg/L,NH3-N≤25 mg/L、TN≤40 mg/L,达到《生活垃圾填埋场污染控制标准》(GB 16889—2008)中的表2标准。  相似文献   

10.
采用序批式活性污泥法(SBR)处理垃圾渗滤液,在控制系统温度为(28±1)℃、进水pH值为7.9~8.2、MLSS为4 000~4 500 mg/L,并保持进水COD为900~1 000 mg/L、NH+4-N为480~500 mg/L的条件下,考察DO对短程硝化反硝化的影响。结果表明,在80~120 L/h的曝气量下能快速实现稳定的短程同步硝化反硝化,对NH+4-N的平均去除率可达92.5%,NO-2-N的平均积累率为89.3%;系统的最佳曝气量为120 L/h,此时对氨氮的去除率为96.9%,亚硝酸盐积累率为97.2%,好氧段对总氮的去除率为74.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号