首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
针对高拉速下薄板坯连铸结晶器内的液面卷渣问题,建立了1∶1水力学模型,采用水/真空泵油模拟钢/保护渣介质,研究了连铸拉速、水口插入深度、保护渣黏度对漏斗形结晶器内液渣层变化及卷渣行为的影响。结果表明,随着拉速提高,结晶器内液面波高升高,液面高度自窄边向水口方向逐渐降低,液渣层厚度相应由薄变厚,导致结晶器窄边附近钢液裸露;结晶器内窄边至水口之间1/2处波高变化较大、液面流速最大、易发生剪切卷渣。在试验条件下,采用增加水口插入深度、降低最高拉速、适当提高保护渣黏度等方法,使液面速度小于0.486 m/s的临界流速、液面波动指数F数小于5.45,可防止结晶器内产生剪切卷渣。然而,这些手段不能避免结晶器内水口附近的旋涡卷渣,这是因为薄板坯连铸钢通量大以及漏斗形结晶器和鸭嘴形水口容易形成负压旋涡造成的。  相似文献   

2.
《炼钢》2017,(3)
传统保护渣大多属于牛顿流体,其黏度往往是一个恒定的值,在连铸生产中具有一定的局限性。为了满足高拉速连铸生产对保护渣性能的要求,急需研制一种具有剪切变稀性质的非牛顿流体保护渣。通过向CaO-SiO_2-CaF_2系传统保护渣中加入不同含量的B_2O_3,使其具有非牛顿流体特性,并分别从热力学和动力学角度对保护渣的剪切变稀性质进行了分析研究,结果发现产生这种剪切变稀性质的原因属于一种由于施加单向剪切应力造成的临时黏度损失,而且其强弱与分子聚合度的大小密切相关。  相似文献   

3.
本文分析了常规板坯连铸结晶器、薄板坯连铸结晶器、方坯连铸结晶器和高拉速连铸结晶器的连铸特点及对结晶器保护渣性能的要求。  相似文献   

4.
通过统计和分析现场数据,得出限制MCCR薄板坯连铸连轧低碳钢拉速提高的主要因素为结晶器热像图中的冷齿和结晶器液面波动,对冷齿和液面波动的成因进行研究,并提出有效控制措施。研究结果表明,结晶器热像图中的冷齿与结晶器弯月面凝固收缩特性相关,受冷却铜板厚度、碳当量、拉速及保护渣影响,反映到铸坯实物上为凹陷或者裂纹缺陷,需合理匹配形成最优参数组合,以降低因冷齿造成的漏钢风险。当结晶器铜板厚度减薄量在6.7%以内时,一冷水维持原设计流量;当结晶器铜板厚度减薄量在6.8%~11.1%时,拉速4.0 m/min以上时需降低10%的一冷水流量;当结晶器铜板厚度减薄量在11.2%~15.6%时,所有拉速下需降低18%的一冷水流量,同时使用高碱度B型保护渣。针对高拉速下结晶器液面波动问题,通过数值模拟研究浸入式水口插入深度、拉速、结晶器断面宽度及电磁制动等参数对结晶器内流场和温度场的影响规律,得到不同拉速和不同断面条件下电磁制动电流的合理配置,使得拉速达到5.5 m/min时钢液面最大流速仍小于0.3 m/s。上述研究结果应用后,结晶器冷齿问题得到有效缓解,110 mm厚的薄板坯最高拉速达到5.8 m/min,结晶器液面波动控制在±1 mm以内,保护渣液渣层厚度保持在8~10 mm,结晶器热流稳定,实现了高拉速的顺稳生产。  相似文献   

5.
刘承军  亓捷  姜茂发 《钢铁》2023,(9):116-126
低反应性CaO-Al2O3基保护渣工业应用过程中,结晶器内渣条粗大,黏结报警频发,无法实现稳定连铸生产。针对上述问题,在分析了工业原渣存在问题的基础上,设计开发了新型CaO-Al2O3基保护渣并进行了工业应用。结果表明,工业用高铝钢连铸保护渣结晶性能较强,Ca12Al14O32F2和LiAlO2等物相过早析出是恶化保护渣性能的主要原因。相图分析表明,调整w(CaO)/w(Al2O3)值是调控熔渣酸碱性和析晶性能的有效措施之一。当w(CaO)/w(Al2O3)从0.93增加至1.65时,保护渣的熔化温度由1 050℃降至959℃;受熔体结构解聚影响,1 300℃下黏度由0.132 Pa·s降至0.054 Pa·s。随着w(CaO)/w(Al2O3)的增加,保护渣的...  相似文献   

6.
对≤1.3 m/min常规拉速(TCaO/SiO2=1.19)和≥1.5 m/min高拉速(TCaO/SiO2=1.40)0.07~0.10C亚包晶钢板坯用两种保护渣(%:2.54~3.0Al2O3、7.34~8.35Na2O、8.83~8.87F、0.79~3.00Li2O)降温凝固过程中结晶特性以及结晶对熔渣粘度的影响进行了研究,得出高拉速保护渣在凝固之前有明显的结晶行为,结晶矿相主要为枪晶石(3CaO·2SiO2·CaF2);常规拉速保护渣在凝固温度以上时,没有明显的结晶现象。与常规拉速保护渣相比,高拉速保护渣完全凝固后晶粒粗大,组织中有大量空隙,有利于增加渣膜热阻,减缓结晶器传热。TCaO/SiO2=1.40保护渣在结晶温度以上时,具有较低的粘度,有利于结晶器润滑;结晶温度以下时,粘度迅速增加,有利于增加固渣膜厚度,减缓结晶器传热。  相似文献   

7.
首钢京唐MCCR产线是国内第一条多模式连铸连轧产线,薄板坯高拉速连铸是实现无头轧制模式的基础,结晶器内流场控制是决定薄板坯高拉速连铸的关键。采用VOF两相流模型研究薄板坯连铸结晶器内流场特点,采用插钉法测量实际生产过程结晶器弯月面流速,并与对应工况条件下模拟结果进行对比校验了模型准确性。通过薄板坯连铸结晶器内流场的数值模拟仿真,获得了薄板坯高拉速条件下结晶器内钢液的流动特征。研究了连铸拉速、2种浸入式水口结构等因素对弯月面流速以及波高差的影响。结果表明:随着通钢量由3.4 t/min增加至8.2 t/min,采用四孔水口时,结晶器弯月面钢液流速由0.02 m/s增加至0.30 m/s,结晶器钢液面波高差由2.0 mm增加至7.2 mm;采用五孔水口时,结晶器钢液面波高差由0.25 m/s增加至0.5 m/s,结晶器钢液面波高差由2.6 mm增加至17.0 mm。高通钢量条件下(5.5~8.2 t/min),采用四孔水口更加有利于控制液面波动稳定性。  相似文献   

8.
根据炼钢厂现有结晶器保护渣FRK-2和FRK-49性能分析的结果,以FRK-2保护渣(/%:32.68SiO2、24.42CaO、3.30MgO、9.52Al2O3、5.40Na2O、3.10Fe2O3、3.59F-、12.60C)为基础开发了较高碱度,保温效果好,较低粘度,有一定还原性以降低弯月面处S和O含量,并避免卷渣的X1215易切削钢(/%:0.06~0.09C、≤0.10Si、1.20~1.50Mn、0.08~0.10P、0.30~0.50S)150 mm×150 mm铸坯连铸结晶器保护渣。生产结果表明,保护渣性能达到X1215低碳高硫易切削钢的生产要求;连铸坯合金元素偏析度均为0.90~1.10,S和Mn偏析度分别为0.95~1.05和0.98~1.03,连铸坯内部质量良好。  相似文献   

9.
铝镇静钢连铸保护渣对Al2O3夹杂物的吸收能力   总被引:1,自引:0,他引:1  
釆用Al2Q3溶解速率测定仪测定了 CaO-SiO2-Na2O-CaF2-Al2O3-MgO连铸保护渣系的抱@溶解 速率。通过建立Al2O3溶解速率和渣成分关系的回归正交设计模型,精确预测铝镇静钢连铸保护渣的夹杂物 吸收能力,并通过建立的非线性规划模型对该保护渣进行优化设计。结果表明,在CaO/SiQ = 1.15,Na2CO30.0%,CaF2 20.0%,2.0%, MgO 8.0%时,连铸保护渣的溶解速率的最大值为1.73 x 10-3 kg·m-2 ·s-1  相似文献   

10.
摘要:首钢京唐MCCR产线是国内第一条多模式连铸连轧产线,薄板坯高拉速连铸是实现无头轧制模式的基础,结晶器内流场控制是决定薄板坯高拉速连铸的关键。采用VOF两相流模型研究薄板坯连铸结晶器内流场特点,采用插钉法测量实际生产过程结晶器弯月面流速,并与对应工况条件下模拟结果进行对比校验了模型准确性。通过薄板坯连铸结晶器内流场的数值模拟仿真,获得了薄板坯高拉速条件下结晶器内钢液的流动特征。研究了连铸拉速、2.种浸入式水口结构等因素对弯月面流速以及波高差的影响。结果表明:随着通钢量由3.4t/min增加至8.2t/min,采用四孔水口时,结晶器弯月面钢液流速由0.02m/s增加至0.30m/s,结晶器钢液面波高差由2.0mm增加至7.2mm;采用五孔水口时,结晶器钢液面波高差由0.25m/s增加至0.5m/s,结晶器钢液面波高差由2.6mm增加至17.0mm。高通钢量条件下(5.5~8.2t/min),采用四孔水口更加有利于控制液面波动稳定性。  相似文献   

11.
Al2O3是一种两性氧化物,在高碱度条件下呈现酸性氧化物特征,而在低碱度条件下表现出碱性氧化物的行为,是冶金熔渣中常见的一种组元。以超高碱度保护渣(综合碱度R=1.75)为研究对象,分析了Al2O3对保护渣流动特性、熔化特性和凝固特性的影响规律。研究结果显示:渣中Al2O3质量分数每增加1%,熔化温度上升5 ℃左右,转折温度下降12 ℃左右,开始结晶温度平均下降11 ℃左右。平均结晶速率随渣中Al2O3质量分数的增加而减小。且随着Al2O3质量分数的增加,保护渣结晶矿相中晶体比例逐渐降低,但晶体保持枪晶石的种类不变。   相似文献   

12.
采用旋转柱体法对不同类型的含氟连铸保护渣黏度进行检测,并基于Arrhenius方程通过非线性回归分析建立了新的黏度预测模型,分析了组分变化对黏度的影响。结合模型计算和实验检测,建立了CaF2?Na2O?Al2O3?CaO?SiO2?MgO渣系的等黏度图。结果表明,与传统的含氟连铸保护渣黏度预测模型相比,该模型计算的偏差在10%以内,当渣中w(CaF2)超过20%时,偏差逐渐增大,主要由于氟化物挥发造成炉渣成分变化,最终黏度实测值与炉渣初始成分不符,造成模型无法对黏度有效预测。此外,研究发现,CaF2的增加能显著降低炉渣黏度,而Al2O3和Na2O对黏度的影响受CaF2含量的限制。当w(CaF2)>17%,炉渣黏度随Al2O3含量增加而减小,当w(CaF2)<17%,Al2O3的增加使炉渣黏度显著增大;当w(CaF2)>11.5%,炉渣黏度随Na2O含量增加显著下降,当w(CaF2)<11.5%,Na2O含量变化对黏度的影响并不明显。此外,该等黏度图表明低黏度区w(CaF2)接近14%。通过调整等黏度图中各组分比例,可以改善保护渣的黏度和流动性,供钢铁工业应用。   相似文献   

13.
对高铝无磁钢20Mn23AIV(/%:0.14~0.20C、21.50~25.00Mn、1.50~2.50Al、0.04~0.10V)200 mm板坯连铸过程结晶器保护渣液渣和渣圈的化学组成、理化性能和结晶矿相进行了对比分析。保护渣原渣组成为(/%):31.91CaO、30.30SiO2、6.58Al2O3、1.12MgO、3.02MnO、7.73Na20、7.10F。结果表明,连铸开浇后15 min,液渣和渣圈中的SiO2含量分别降低至22%和18%, Al2O3含量分别提高至20.5%和25.5%,其碱度由原渣的1.05分别提高至1.7和2.0。此时液渣及渣圈的熔化温度和粘度大幅度增加,转折温度大幅度降低;渣圈的化学成分及理化性能的变化幅度均大于液渣。连铸开浇15 min后液渣及渣圈的成分与性能均趋于稳定。高熔点相钙铝黄长石的析出是促使渣圈形成的重要原因。  相似文献   

14.
使用偏光显微镜,系统对比分析了邯郸钢厂超低碳钢SPHC(0.020%~0.055%C,70 mm板坯保护渣/%:33.14SiO2,3.86Al2O3,3.88MgO,31.52CaO,8.27K2O+Na2O,7.55F-1,3.93C)、包晶钢SS400(0.18%~0.22%C,70 mm板坯保护渣/%:29.62SiO2,4.63Al2O3,2.05MgO,35.86CaO,10.43 K2O+Na2O,7.55F-1,3.93C)和Ti微合金钢Q345B(0.15%~0.19C,0.04%~0.05%Ti,260 mm板坯保护渣/%:31.10SiO2,5.21Al2O3,5.07MgO,35.46CaO,6.22K2O+Na2O,6.96F-1,6.96C)对应的渣膜的矿相组成、结晶率和显微结构。结果表明,3种渣膜从铸坯至结晶器侧均呈现"结晶层-玻璃层"交替结构。SPHC钢渣膜有90%~95%的玻璃相,结晶相仅出现少量枪晶石,低结晶率有利于其润滑铸坯;SS400钢渣膜结晶率为55%~60%,析出较多的枪晶石和部分黄长石,有利于控制铸坯传热;Ti微合金钢Q345B渣膜结晶率略高于SS400钢,析出的黄长石、枪晶石和硅灰石能同时满足连铸对其润滑和控制传热的需求,可得到良好的铸坯质量。  相似文献   

15.
0.88%Si无取向硅钢的生产工艺为100 t BOF出钢时加300kg石灰,终点[C]0.035%~0.05%,出钢温度1640~1650℃,RH吹氧脱碳,加99.0%Al-Fe合金6.69 kg/t,加70%Si-Fe合金15.70 kg/t,70 mm板坯连铸过程全程保护浇铸,使用镁质碱性中间包覆盖剂。分析结果表明,RH终点[O]28×10-6,铸坯[O]22×10-6,RH-前[N]为16×10-6,RH过程增氮4×10-6,RH结束到铸坯增氮6×10-6;RH脱碳终点时钢中夹杂物以球形MnO·Al2O3为主;RH出站时以不规则形状的Al2O3为主,并伴有少量单独存在的CaS夹杂;中间包钢液内的夹杂物主要以不规则形状的Al2O3为主;铸坯中多为不规则形状的Al2O3以及少量AlN,还有少量由结晶器卷渣引起的含Na成分的复合夹杂物。  相似文献   

16.
余彬  周恒  孙朝晖  王莹  陈海军 《工程科学学报》2017,39(12):1822-1827
采用近似无限大流体重力沉降原理分析了多期法FeV50合金浇铸过程渣金分离及浇铸渣层钒的分布规律,考察了熔渣黏度、沉降粒度、浇铸温度、渣层厚度以及保温制度对渣中钒含量的影响.结果表明,浇铸渣中钒的赋存形式除了未还原完全的钒氧化物之外,还存在部分未完全沉降的初级合金;合金沉降速度随合金粒度的增加而增大,随熔渣黏度的增加而减小.1850℃条件下,当渣层厚度为50 mm,熔渣组分质量分数为65.2% Al2O3、15.5% CaO、14.6% MgO、1.9% Fe2O3、0.9% SiO2时,粒径为100 μm的合金沉降时间及熔渣上浮时间分别为24.9和1.2 min.基于此,进行浇铸工艺优化试验,在渣层厚度35 mm,浇铸温度1900℃、熔渣主要成分质量分数Al2O3 60%~65%、CaO 15%~20%、MgO 9%~15%、浇铸锭模保温层厚度9 cm的条件下,浇铸渣中平均TV质量分数由1.39%降低至0.58%.   相似文献   

17.
 采用1∶1的水模型研究了5种不同底孔直径(16~28mm)的三孔水口下漏斗型薄板坯结晶器内的流场、液面特征和卷渣行为。结果表明:在常规工艺参数下,5种三孔水口下结晶器内钢液的流场都是典型的“双辊流”,且流场稳定;在5种三孔水口下结晶器液面波动都较平稳,且波动范围都在±(3~5)mm之间。5种不同水口下结晶器液面主要发生剪切卷渣,漩涡卷渣很少发生。试验得知:在水口浸入深度280mm,拉速为5m/min时,剪切卷渣发生的钢液临界表面速度是0.32m/s,与文献报道的模型计算值较吻合。在水口浸入深度280mm、拉速为5m/min的条件下,适合薄板坯连铸的最佳的三孔水口的底孔直径为22mm。  相似文献   

18.
朱立光  袁志鹏  肖鹏程  王杏娟  殷楷  张杰 《钢铁》2020,55(11):65-73
 针对低碳钢薄板坯高速连铸过程中保护渣液渣层过薄、黏结报警频发、铸坯表面纵裂纹过多等问题,在充分考虑高拉速下低碳钢凝固收缩特性的基础上,确定了保护渣润滑与传热性能的优化方向并开展了工业试验。将保护渣碱度从1.10提高到1.30,Li2O质量分数从0.57%提高到1.06%,Na2O质量分数从5.48%提高到8.16%,碳质量分数由7.71%降低到6.72%。对2种保护渣的流变性能和渣膜3层结构进行了深入研究,发现优化后保护渣渣膜中的液渣层比例增加,渣膜润滑系数α增大;同时,渣膜中的结晶层比例也有一定程度的提高,渣膜热阻系数β增大,从而使保护渣的润滑性能和控制传热能力均得到改善。从矿相分析结果看出,保护渣碱度的提高在一定程度上会促进硅灰石的析出,导致渣膜结晶率提高、热阻增大,进而起到控制传热的目的。生产实践表明,在拉速提高后,使用新型保护渣基本避免了黏结和裂纹的产生,生产效率和铸坯质量均得到显著提高。  相似文献   

19.
高钛焊丝钢连铸过程中结晶器内钢渣界面反应严重,首先对存在严重钢渣界面反应现象的A钢种进行了凝固特性分析。设计一种低反应性的高钛焊丝钢专用的CaO-Al2O3渣系保护渣。通过相图计算保护渣的基础组分w(CaO)/w(Al2O3)=1.0,Na2O质量分数为8%,MgO质量分数为3%,CaF2质量分数为4%~6%,B2O3质量分数为4%~10%,SiO2质量分数为4%~12%,TC质量分数为8%~10%。利用熔点熔速测定仪和旋转黏度计等设备重点研究了保护渣的熔化特性。得出适宜组分的CaO-Al2O3基高钛焊丝钢专用保护渣,熔点为1 037~1 129 ℃,熔速为64~79 s,黏度(1 300 ℃)为0.325~0.554 Pa·s。  相似文献   

20.
检测分析了加改质剂(/%:38~43Al,20~30Al2O3,27~31CaO,≤6SiO2,≤6MgO)改质210 t钢包顶渣前后超低碳钢(≤0.01%C)连铸坯中的夹杂物数量和尺寸分布,通过热力学分析,研究了改质剂对钢渣间氧平衡以及连铸坯中夹杂物的影响。结果表明,钢包顶渣改质前的精炼渣样成分为(/%)25.55~39.68CaO,8.51~15.14SiO2,6.34~27.09MgO,5.92~6.54Al2O3,17.32~22.24FeO,3.86~7.35MnO,改质后渣样成分为(/%)34.36~40.43CaO,7.69~11.47SiO2,6.42~7.31MgO,8.31~25.54Al2O3,11.94~20.78FeO,2.17~2.63MnO;采用钢包顶渣改质处理,实际渣中a(FeO)小于与钢液中氧相平衡的a(FeO),引起了钢液中的氧通过渣金界面向渣中扩散,从而降低了钢液中氧活度,显著改善钢液的洁净度和降低连铸坯中的夹杂物数量和尺寸,水口结瘤得到明显改善;同时,虽然渣中的a(FeO)下降较小,但钢液中氧活度得到了明显降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号