首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2022,48(5):6722-6733
With the aim of remanufacturing high-value wear parts of shield tunneling machines, novel Fe-based composite coatings were prepared by collaborative modification with nano-TiC and nano-CeO2 particles. This work aims to improve the wear properties of Fe-based alloy coatings by regulating the morphology and dispersion of TiC through the addition of different contents of nano-TiC and nano-CeO2. First, the coatings with different contents of nano-TiC (from 5 wt% to 15 wt%) and nano-CeO2 (from 1 wt% to 2 wt%) were prepared by laser cladding. Subsequently, the microstructure, phase composition, microhardness, and wear properties of the coatings were examined. Furthermore, the wear morphology and the influence mechanism of nano-particles on the wear resistance of the coatings were investigated. It was found that the addition of nano-TiC eliminates the macro-defects of Fe55 alloy coating. Meanwhile, the morphology and dispersion of TiC particles in coatings were affected by the content of nano-TiC and nano-CeO2. Specifically, the addition of 1 wt% nano-CeO2 facilitates to the formation of near-spherical tiny TiC particles with low agglomeration in the coating. Therefore, the Fe55 + 10 wt% nano-TiC+1 wt% nano-CeO2 coating exhibits the best wear property among all the prepared Fe-based coatings. This paper provides theoretical guidance for the preparation of the modified Fe-based coating with excellent wear resistance.  相似文献   

2.
We have measured the adhesion strengths of metal oxide and metal nitride thin films reactively sputtered onto glass substrates using a specially devised direct pull-off test. For double-layer coatings such as metal nitride (CrNx, TiNx)/metal oxide (Al2O3, SnO2, Ta2O5, TiO2, ZnO, ZrO2)/glass, separation usually took place at the nitride/oxide interface. The adhesion strength at the interface was found to depend on the strength of chemical bonding in the films concerned: for the same nitride top layer, the adhesion strength increased as the strength of the metal-oxygen (M-O) bond in the oxide underlayer decreased. X-ray photoelectron spectroscopy (XPS) measurements showed that a mixed layer was created at the nitride/oxide interface and that the adhesion strength at the interface increased with increasing thickness of the mixed layer. For single-layer coatings such as metal nitride (CrNx, TaNx, TiNx, ZrNx)/glass, the adhesion strength of the film to the glass substrate was found to increase with increasing strength of the M-O bond between the metal atom (M) in the nitride film and an oxygen atom (O). These adhesion behaviors could be explained by adhesion models based on chemical bonds at the interfaces.  相似文献   

3.
The polyamide (PA) composite coating filled with the particles of microsized MoS2, microsized graphite, and nano‐Al2O3, respectively, were prepared by flame spraying. The friction and wear characteristics of the PA coating and composite coating filled with the varied content of filler under dry sliding against stainless steel were comparatively investigated using a block‐ring tester. The morphologies of the worn surfaces and transfer films on the counterpart steel ring were observed on a scanning electron microscope. The result showed that the addition of fillers to the composite coatings changed significantly the friction coefficient and wear rate of the coatings. The composite coatings filled with a low level content of fillers showed lower wear rate than did pure PA coating under dry sliding; especially the MoS2/PA composite coating had the lowest wear rate among these composite coatings. The composite coatings with a high level content of fillers had higher wear rate than did pure PA coating, except of the Al2O3/PA composite coating. The bonding strengths between the polymer matrix and fillers changed with the content of the fillers, which accounted for the differences in the tribological properties of the composite coatings filled with the varied content fillers. On the other hand, the difference in the friction and wear behaviors of the composite coatings and pure coating were attributed to the difference in their worn surface morphologies and transfer film characteristics. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

4.
采用等离子弧喷焊技术在Q235表面制备未添加与分别添加1wt%, 3wt%和5wt%纳米Nb粉的铁基合金喷焊层。通过X射线衍射仪(XRD)、金相显微镜(OM)、扫描电镜(SEM)和能谱仪(EDS)对喷焊层的相组成、显微组织、微区成分及磨损形貌进行分析;利用维氏硬度仪和销盘磨损仪检测喷焊层截面硬度和表面耐磨性。结果表明,铁基喷焊层主要由α-Fe, γ-Fe和Cr7C3组成,添加纳米Nb粉后原位生成NbC相,且随Nb含量增至5wt%,出现了Cr23C6相。纳米Nb粉的加入使喷焊层组织中未转变的奥氏体增多,组织形貌由近等轴晶转变为树枝晶,并且添加5wt%纳米Nb粉的喷焊层组织发生明显细化。添加纳米Nb粉使喷焊层的硬度明显提高,其中添加1wt%和3wt%纳米Nb粉的喷焊层硬度均可达约766 HV0.3。纳米Nb粉的加入同时提高了喷焊层的耐磨性,磨损机制由黏着磨损变为磨粒磨损。  相似文献   

5.
A SiTiOC ceramic coating with outstanding tribological performance was prepared by laser scanning the organosilicon coating with different laser power. The composition and structure of the obtained SiTiOC ceramic coatings were analyzed by scanning electron microscopy (SEM), infrared spectroscopy (FTIR), Raman spectra, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscope (TEM). The tribological performance of the coatings was studied using a multi-functional reciprocating friction and wear tester. The results showed that the chemical structure (chemical bonding) of the coatings prepared at 0 W, 350 W, and 500 W laser powers included Si-O-Si, Si-C, and TiO2, while that prepared at 800 W was mainly composed of amorphous SiO2, indicating that the coating had higher ceramization. The SiTiOC ceramic coatings prepared by the present process effectively reduced the friction coefficient and wear volume of the steel substrate, which indicated that they had good anti-friction and wear resistance properties.  相似文献   

6.
《Ceramics International》2020,46(9):13527-13538
Ni–based composite coatings with different amounts of TiO2–ZnO were fabricated by atmospheric plasma spraying (APS) to protect GH4169 superalloy substrates against excess wear and friction at elevated temperatures. In addition, the influence of the simultaneous addition of the oxides on the microstructure, microhardness, and wear behaviour was investigated. According to the results, the simultaneous addition of TiO2/ZnO provides anti-friction and wear inhibition over 600 °C. In particular at 800 °C, the TiO2–ZnO/Ni–5wt.%Al composite coating (10 wt% TiO2 and 10 wt% ZnO were incorporated within Ni–5wt.%Al matrix) exhibits a superior lubricity and wear resistance compared to the Ni–5wt.%Al based coatings. The XRD, Raman, and TEM characterisations reveal the formation of a glaze oxide layer consisting of NiO, TiO2, ZnO and the in-situ production of ternary oxide (Zn2TiO4), which was primarily responsible for the tribological performance of the sliding wear contacts at the specific temperature.  相似文献   

7.
《Ceramics International》2023,49(10):15891-15899
Titanium oxynitride (TiNxOy) thin films exhibiting tunable physical and chemical properties can be used in many fields. Air-based sputtering deposition of the films with diverse O/N ratios was employed to produce gradient and multilayer films. By solely altering the air/Ar flow ratio, obtained TiNxOy films could change from a crystalline to a mainly amorphous feature. Moreover, the carrier concentration, Hall mobility, and hence resistivity of the films could be modified to a large range. The optical bandgaps of the films could also be tailored to a wide extent. Based on these results, the gradient TiNxOy layer and TiNxOy/TiN(O) multilayer were also deposited on TiN(O)-coated glass substrates for the assessment of photoelectrochemical performance. Compared with the TiNxOy/TiN(O) bilayer with the best photoelectrochemical performance, the photoelectrochemical currents of gradient TiNxOy films could be improved from 99 ± 2 μA⋅cm−2 to 164 ± 2 μA⋅cm−2 by taking advantage of bandgap engineering. Additionally, the photoelectrochemical currents of TiNxOy/TiN(O) multilayer were further improved to 175 ± 6 μA⋅cm−2. This is mainly due to conductive nano TiN(O) layers providing multiple high-transport paths while allowing light transmission. The enhancement mechanisms of the gradient and multilayer films have also been elaborated.  相似文献   

8.
《Ceramics International》2023,49(1):894-906
To improve the microhardness and wear resistance of Mo2FeB2 coatings, composite coatings were prepared by laser cladding using in situ synthesized NbC, WC, and TaC. The influence of different carbides on the morphology, microstructure, microhardness, residual stress, and tribological properties of the composite coatings was investigated. The results showed various microstructural morphologies in different composite coatings. Apparent herringbone structures were observed in most coatings except for the Mo2FeB2/TaC composite coating and a eutectic structure was formed in the Mo2FeB2/WC composite coating. In addition, the heat-affected zone was typically composed of acicular martensite and lath martensite. The microhardness of the Mo2FeB2/WC composite coating increased to 1543.6 HV0.5 compared with 985.7 HV0.5 observed for the Mo2FeB2 coating. Tensile stress existed in the coating, bonding zone, and heat-affected zone, whereas the substrate exhibited compressive stress. The Mo2FeB2/WC composite coating exhibited the lowest tensile stress (298 MPa). The Mo2FeB2/WC composite coating containing WC and the W2C phase had the lowest coefficient of friction (0.38) and wear rate (3.90 × 10?5 mm3/Nm), indicating its excellent tribological properties. Moreover, the wear mechanism of the Mo2FeB2 coating is severe adhesive and abrasive wear. The adhesive wear mechanism was mitigated by the formation of in situ synthesized NbC, WC, and TaC. The wear mechanism of the Mo2FeB2/WC composite coating was only a slight abrasive wear.  相似文献   

9.
《Ceramics International》2017,43(6):5319-5328
Adding nano particles can significantly improve the mechanical properties and wear resistance of thermal sprayed Al2O3 coating. However, it still remains a challenge to uniformly incorporate nano particles into traditional coatings due to their bad dispersibility. In the present work, nanometer Al2O3 (n-Al2O3) powders modified by KH-560 silane coupling agent were introduced into micrometer Al2O3 (m-Al2O3) powders by ultrasonic dispersion to afford nano/micro composite feedstock, and then four resultant coatings (weight fraction of n-Al2O3: 0%, 3%, 5% and 10%) were fabricated by atmospheric plasma spraying. The features and constitutes of feedstock and as-sprayed coatings, as well as their porosity, bonding strength, microhardness and frictional behaviors were investigated in detail. Results show that the nano/micro composite feedstock with uniform microstructure can be better melted in the spraying process, thereby obtaining coatings with denser microstructure, higher hardness and bonding strength. Added n-Al2O3 has no obvious effect on the friction coefficient of composite coatings, whereas can improve their wear-resistant and reduce the worn degree of counterpart. The wear mechanism of traditional coating is brittle fracture and lamellar peeling, while that of composite coating with weight fraction of n-Al2O3 of 10% is adhesive wear.  相似文献   

10.
Amorphous silicon oxycarbides are known to be an effective anode material for lithium-ion batteries. Despite their exceptional properties and high charge capacities, however, their practical uses are limited by their significant first-cycle loss, considerable hysteresis, and low cyclic ability. Comparatively, SiOC/metal oxide materials have demonstrated increased rate capability and cyclic stability. This study utilized a liquid precursor-derived ceramic method to modify SiOC with titanium (IV) butoxide precursor to synthesize SiOC/TiOxCy. X-ray diffractograms confirmed the amorphous nature of SiOC/TiOxCy. The elemental composition and bonding properties were investigated using X-ray photoelectron spectroscopy, and electron microscopy was used to explore morphological features. In the first cycle, the reversible capacity of pyrolyzed SiOC/TiOxCy was 520 mAh g−1, which then increased to 736 mAh g−1 for the 1200°C annealed SiOC/TiOxCy due to the increased free carbon network and TiC conductive phases. The irreversible capacity of the first cycle was 568 mAh g−1, which was lower than the annealed SiOC irreversible capacity of 695 mAh g−1. Interestingly, the rate stability of the pyrolyzed SiOC/TiOxCy performed more stability than the annealed sample. Localized carbothermal reactions between amorphous SiOC/TiOxCy and free carbon at annealing temperatures resulted in loss of structure stability.  相似文献   

11.
《Ceramics International》2020,46(15):23510-23515
TiCN coatings were reactive plasma sprayed with different Ti/graphite powder ratios. Their crystallization behaviours were investigated. The results showed that the TiN coating consisted of TiN and TiN0.3O phases. With the decrease in the Ti/graphite ratios, the phases in the coatings changed from TiC0.7N0.3+TiC0.3N0.7+amorphous (Ti:graphite = (6-10):1) to TiC0.3N0.7 + TiC + amorphous (Ti:graphite = 4:1). The surface of the TiN coating exhibited the columnar crystals. With the decrease in the Ti/graphite ratios, the columnar crystals gradually skewed towards the surface. The cross-section crystalline morphologies of all the coatings exhibited the layer-layer columnar crystals with better bonding interfaces between the layers. The micro-hardness of the sprayed TiN coating was 1000 HV0.1. The micro-hardness of the TiCN coatings increased with the decrease in the Ti/graphite ratios. The maximum microhardness (1315 HV0.1) was observed at a Ti/graphite ratio of 4:1, approximately 30% higher than that of the TiN coating. The increase in the micro-hardness was correlated with the phase composition and crystalline morphologies.  相似文献   

12.
The structural evolution of lead-free piezoelectric bismuth sodium titanate (BNT) coatings with excess Bi derived from thermal spray process was investigated with transmission electron microscopy (TEM). Bi-rich composition was identified as the nucleation agent of the BNT perovskite phase, and fine-grained microstructure was obtained with more excess Bi. The Bi-rich composition of the perovskite phase crystallized from melt was BixNayTiO3 (0.5 ≤ X ≤ 0.55, 0.46 ≤ y ≤ 0.5). The crystallization of the Bi-rich BNT perovskite phase first from liquid precursor phase would result in continuous depletion of Bi composition in the residual amorphous phase, and thus Ti-rich amorphous phase in the as-deposited coating and sodium titanate secondary phase in the heat-treated coating formed in the composition without enough access Bi. The results and analyses suggest only appropriate compensation with adequate amount of excess Bi can realize single perovskite phase in thermal sprayed BNT-based coatings and hence the superior piezoelectric performance property.  相似文献   

13.
In the present study, graphene nanoplatelets (GNPs: 1–2 wt. %) reinforced TiN coating were successfully fabricated over titanium alloy using a reactive shroud plasma spraying technique. All coatings were completely oxide free, while the addition of GNPs suppressed the non-stoichiometric TiN0.3 phase. Improvement of 19%, 18% and 300% in hardness, elastic modulus and fracture toughness was achieved by mere addition of 2 wt. % GNP. The addition of GNP in TiN also reduced the wear volume loss and the wear rate of the coatings for the entire range of temperature (293–873 K). Moreover, GNPs also manifested the coefficient of friction (COF) of the coating. Post wear characterization revealed that the presence of GNP throughout the wear track even at 873 K. The multi-layer structure of GNPs assisted in long term lubricity to the surface and increased the wear resistance of the coating.  相似文献   

14.
In this work, a freeze-dried TiO2 nano-sized powder was used as the coating material and single tracks of TiOx coating were cladded on Ti-6Al-4V substrates using a diode laser. The microstructure, chemical composition, and mechanical properties of the coatings were characterized and their relationships were explored. Coatings with structural and compositional gradients formed under a laser energy density (LED) of 20 kJ/m, while coatings with a relatively homogeneous microstructure were obtained using a LED of 30 kJ/m. The microstructure evolution was controlled by the molten pool lifetime and the intensity of convective flow during laser processing. The elastic modulus of the graded coating showed a decreasing trend from the top coating surface to the interface while that of the homogeneous coating remained constant. Our results also demonstrated that the hardness and wear resistance of the oxide coatings were up to four and ten times higher than that of the substrate.  相似文献   

15.
Weiwei Chen 《Electrochimica acta》2010,55(22):6865-9102
Novel sol-enhanced Ni-TiO2 nano-composite coatings were electroplated by adding a transparent TiO2 sol into the traditional electroplating Ni solution. It was found that the structure, mechanical properties and corrosion resistance of the nano-composite coatings were largely determined by the sol concentration. The higher sol concentration in the plating electrolyte led to a higher content of TiO2 nano-particles in the coating matrix. The coating prepared at the sol concentration of 12.5 mL/L had the best microhardness, wear resistance and corrosion resistance. Adding excessive sol to the electrolyte changed the surface microstructure, caused cracking on the coating surface and deteriorated the properties. It was demonstrated that the corrosion resistance of the composite coatings is determined by two factors: surface microstructure and incorporation of TiO2 nano-particles.  相似文献   

16.
The process of nitridation of hydrated titanate wires was examined by thermal gravimetric (TG) analysis in an NH3/Ar (50/50 vol.%) gas mixture, X-ray diffraction (XRD) measurement, field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) observations and X-ray photoelectron spectroscopic (XPS) analysis. The nitridation of the hydrated titanate nanowires was accompanied by a two-stage weight loss. In the first stage, occurring in the temperature range of 50-400 °C, the hydrated titanate wires changed to anatase-type TiO2 nanoparticles with the releasing of H2O molecules. In the second stage, occurring in the temperature range of 700-1000 °C, the TiO2 nanoparticles were converted to rock-salt-type titanium oxynitride (TiNxOy) nanoparticles. Subsequently, the TiNxOy nanoparticles were sintered each other at around 1000 °C. Under a gas flow of 100% NH3, the hydrated titanate wires were completely changed to TiNxOy particles at a temperature greater than 950 °C, which was maintained for 2 h. It is possible to fabricate needle-like TiNxOy particles by selecting thick hydrated titanate wires as the starting materials.  相似文献   

17.
《Ceramics International》2023,49(2):1667-1677
Graphene oxide (GO) reinforced Al2O3 ceramic coatings were prepared on the surface of medium carbon steel by plasma spraying. The microstructure of the raw materials and coatings were characterized and analyzed by XPS, XRD, Raman and SEM. The bonding strength of the coatings was studied using a scratch method. The wear resistance of the coatings was assessed by the sliding test. The results showed that, after adding GO, the porosity of the coating reduced by about 31%, the hardness increased by approximately 10%, the bonding strength improved by 250%, and the wear rate reduced by 81% (Load: 30 N) and 84% (Load: 60 N), respectively.  相似文献   

18.
In this paper, the effect of titania particles preparation on the properties of Ni–TiO2 electrocomposite coatings has been addressed. Titania particles were prepared by precipitation method using titanium tetrachloride as the precursor. The titanyl hydroxide precipitate was subjected to two different calcinations temperatures (400 and 900 °C) to obtain anatase and rutile titania particles. These particles along with commercial anatase titania particles were separately dispersed in nickel sulfamate bath and electrodeposited under identical electroplating conditions to obtain composite coatings. The electrodeposited coatings were evaluated for their microhardness, wettability, corrosion resistance, and tribological behavior. The variation of microhardness with current density exhibited a similar trend for all the three composite coatings. The composite coating containing anatase titania particles exhibited higher microhardness and improved wear resistance. However, the corrosion resistance of the composite coating containing commercial titania powder was superior to that of plain nickel, Ni–TiO2 composite coatings containing anatase and rutile titania particles. The poor corrosion resistance of these composite coatings was attributed to the higher surface roughness of the coatings. This problem was alleviated by incorporating ball-milled titania powders. The composite coatings with higher surface roughness were modified with a low surface energy material like fluoroalkyl silane to impart hydrophobic and superhydrophobic properties to the coatings. Among these coatings, Ni–TiO2–9C coating exhibited the highest water contact angle of 157°.  相似文献   

19.
TiO2?xNy/Ag‐PbMoO4 composite were synthesized by sonochemical method. The results revealed that the band‐gap energy absorption edge of TiO2?xNy/Ag‐PbMoO4 composite was shifted to a longer wavelength as compared to TiO2, TiO2?xNy, PbMoO4, and Ag‐PbMoO4. The TiO2?xNy/Ag‐PbMoO4 composite showed the enhanced photocatalytic activity for degradation of indigo carmine dye (ICD) under simulated solar light irradiation. The TiO2?xNy/Ag‐PbMoO4 composite exhibited the highest percentage (95.4%) of degradation of ICD and the highest reaction rate constant (0.0244 min?1) in 2 h. The results suggested that a good combination of Ag and TiO2?xNy nanoparticles has great influence on the photocatalytic behavior of PbMoO4.  相似文献   

20.
In this study, the microstructure and mechanical properties of the atmospheric plasma-sprayed Cr2O3 (C), Cr2O3-20YSZ (CZ), and Cr2O3-20YSZ-10SiC (CZS) coatings were evaluated and also compared with each other, so as to explain the coatings wear behavior. Microstructural evaluations included X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) equipped with energy dispersive X-ray spectroscopy (EDX) and porosity measurements. Mechanical tests including bonding strength, fracture toughness, and micro-hardness tests were used to advance our understanding of the correlation between the coatings properties and their wear behavior. The sliding wear test was conducted using a ball-on-disk configuration against an alumina counterpart at room temperature. Addition of multimodal YSZ and subsequent SiC reinforcements to the Cr2O3 matrix resulted in an increase in the fracture toughness and Vickers micro-hardness, respectively. It was found that the composite coatings had comparable coefficients of friction with pure Cr2O3 coatings. When compared with the C coating, the CZ and CZS composite coatings with higher fracture toughness exhibited superior wear resistance. Observation of the wear tracks of the coatings indicated that the lower wear rates of the CZ and CZS coatings were due to the higher plastic deformation of the detached materials. In fact, improvement in the wear resistance of the composite coatings was attributed to a phase transformation toughening mechanism associated with tetragonal zirconia which created more ductile tribofilms during the wear test participated in filling the pores of coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号