首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(14):20245-20250
There has been extensive research on microwave dielectric materials considering their application in 5G and 6G communication technologies. In this study, the sintering temperature range of Mg2TiO4–CeO2 (MT-C) ceramics was broadened using a composite of CeO2 and Mg2TiO4 ceramics, and their microwave dielectric performance was stabilized. Low-loss MT-C composite ceramics were prepared using the solid-phase reaction method, and their microwave dielectric properties, microscopic morphologies, and phase structures were investigated. The proposed MT-C ceramics contained Mg2TiO4 and CeO2 phases; their average grain size was maintained at 2–4 μm in the sintering temperature range of 1275–1425 °C, and the samples were uniformly dense without porosity. The cross-distribution of Mg2TiO4 and CeO2 grains in the samples inhibited the growth of ceramic grains, providing uniform and dense surfaces. The dielectric loss of MT-C ceramics remained constant in the temperature range of 1300–1425 °C at 9 × 10?4 (8.45 ≤ f ≤ 8.75 GHz). As opposed to the base material, MT-C ceramics are advantageous owing to their wide sintering temperature range and the stable microwave dielectric properties, and there are suitable substrate materials for further industrial applications.  相似文献   

2.
BaTi4O9 microwave dielectric ceramics were prepared by reaction sintering method using BaCO3 and TiO2 as raw materials. The phase evolution and the chemical reactions were proposed based on the X-ray diffraction results with sintering temperature. The microstructure characteristics were observed using scanning electron microscopy and energy dispersive spectrometer. The compact ceramics with a single phase of BaTi4O9 could be prepared successfully by reaction sintering method, exhibiting optimum microwave dielectric properties: a dielectric constant of 36.9, a high quality factor of 52 735 (at 7.5GHz), and a near zero temperature coefficient of resonant frequency of 5.8 ppm/°C, after sintering at 1200°C for 6 hours.  相似文献   

3.
Low temperature sintering and microwave dielectric properties of barium polytitanate (BaO–4TiO2) ceramics prepared by means of polymeric precursor route based on the Pechini process were investigated. Pure and fine BaTi4O9 powders with particle sizes of 100–200 nm were derived by thermal decomposition of amorphous gel precursor (above 750 °C). They formed single orthorhombic BaTi4O9 phase and showed fine and well-dispersed by XRD and SEM observation. The high sintering ability of the prepared powders enabled the fabrication of dielectric ceramics at low sintering temperatures (1200–1300 °C). The well-sintered BaTi4O9 ceramics with high relative densities (95%) were found to show excellent microwave dielectric properties compared to those prepared by conventional method at the same sintering temperature.  相似文献   

4.
The sintering behaviors and microwave dielectric properties of the 16CaO–9Li2O–12Sm2O3–63TiO2 (abbreviated CLST) ceramics with different amounts of V2O5 addition had been investigated in this paper. The sintering temperature of the CLST ceramic had been efficiently decreased by nearly 100 °C. No secondary phase was observed in the CLST ceramics and complete solid solution of the complex perovskite phase was confirmed. The CLST ceramics with small amounts of V2O5 addition could be well sintered at 1200 °C for 3 h without much degradation in the microwave dielectric properties. Especially, the 0.75 wt.% V2O5-doped ceramics sintered at 1200 °C for 3 h have optimum microwave dielectric properties of Kr = 100.4, Q × f = 5600 GHz, and TCF = 7 ppm/°C. Obviously, V2O5 could be a suitable sintering aid that improves densification and microwave dielectric properties of the CLST ceramics.  相似文献   

5.
In this work, novel series of (1 ? x)Li2MO4xTiO2 (M = Mo, W; x = 0.3, 0.4, 0.45, 0.5, 0.6) ceramics were developed for microwave dielectric application. They were prepared via the mixed‐oxide process and the phase composition, microstructures, sintering behaviors, and microwave dielectric properties were investigated. The X‐ray diffraction (XRD) pattern and scanning electron microscope analysis indicated that the Li2MO4 (M = Mo, W) did not react with rutile TiO2 and a stable two‐phase composite system Li2MO4–TiO2 (M = Mo, W) was formed. The XRD pattern of cofired ceramics revealed that some parts of Li2MoO4 phase and very small part of Li2WO4 phase react with Ag to form Ag2MoO4 phase and Ag2WO4 phase, respectively. At x = 0.45–0.5, temperature stable microwave dielectric materials with low sintering temperature (700°C–730°C) were obtained: εr = 10.6–11.0, Qf = 30 060–32 800 GHz, and temperature coefficient of resonant frequency ~0 ppm/°C.  相似文献   

6.
《Ceramics International》2016,42(16):18333-18337
The effect of CuO/MnO additives on phase composition, microstructures, sintering behavior, and microwave dielectric properties of 3ZrO2-3TiO2-ZnNb2O6 (3Z-3T-ZN) ceramics prepared by conventional solid-state route were systematically investigated. CuO/MnO doped ceramics exhibited a main phase of α-PbO2-structured ZrTi2O6 and a secondary phase of rutile TiO2. SEM results showed that the grain size of MnO doped ceramics became larger with increasing amount of dopants. The presence of CuO/MnO additives effectively reduced the sintering temperature of 3Z-3T-ZN ceramics to 1220 °C. MnO doped into ceramics could enhance the Q×f values significantly. The 0.5 wt% CuO doped 3Z-3T-ZN ceramics with 0.5 wt% of MnO, sintered at 1220 °C for 4 h, was measured to show superior microwave dielectric properties, with an εr of 41.02, a Q×f value of 44,230 GHz (at 5.2 GHz), and τf value of +2.32 ppm/°C.  相似文献   

7.
《Ceramics International》2022,48(1):199-204
MgNb2-xVx/2O6-1.25x (0.1≤x≤0.6) ceramics with orthorhombic columbite structures were prepared at low-temperature by a solid-phase process. The phase component, microscopic morphology, low-temperature sintering mechanism and microwave dielectric performance of MgNb2-xVx/2O6-1.25x ceramics were comprehensively investigated. Low-temperature sintering densification of dielectric ceramics was achieved via the nonstoichiometric substitution of vanadium (V) at the Nb-site. In contrast to pure MgNb2O6 ceramics, the sintering temperature of MgNb2-xVx/2O6-1.25x (x = 0.2) ceramics was reduced by nearly 300 °C owing to the liquid-phase assisted sintering mechanism. The liquid phase arises from the autogenous low-melting-point phase. Meanwhile, MgNb2-xVx/2O6-1.25x (x = 0.2) samples with nonstoichiometric substitution could achieve a more than 900% improvement in the Q × f value, compared with stoichiometrically MgNb2-xVxO6 (x = 0.1, 0.2) ceramics. Finally, MgNb2-xVx/2O6-1.25x dielectric ceramics possess outstanding microwave dielectric properties: εr = 20.5, Q × f = 91000, and τf = -65 ppm/°C when sintered at 1030 °C for x = 0.2, which provides an alternative material for LTCC technology and an effective approach for low-temperature sintering of Nb-based microwave dielectric ceramics.  相似文献   

8.
The TiO2 ceramics were prepared by a solid-state reaction in the temperature range of 920–1100 °C for 2 h and 5 h using TiO2 nano-particles (Degussa-P25 TiO2) as the starting materials. The sinterability and microwave properties of the TiO2 ceramics as a function of the sintering temperature were studied. It was demonstrated that the rutile phase TiO2 ceramics with good compactness could be readily synthesized from the Degussa-P25 TiO2 powder in the temperature range of 920–1100 °C without the addition of any glasses. Moreover, the TiO2 ceramics sintered at 1100 °C/2 h and 920 °C/5 h demonstrated excellent microwave dielectric properties, such as permittivity (Ɛr) value >100, Q × f  > 23,000 GHz and τf  200 ppm/°C.  相似文献   

9.
《Ceramics International》2020,46(17):27193-27198
In this work, cold sintering was adopted to prepare Na2WO4 ceramics with different grain sizes ranging from 0.632 μm to 17.825 μm. Their microstructures, complex impedance, and microwave dielectric properties were studied in-depth. It was found that samples with relative densities higher than 92% can be successfully synthesized by cold sintering process at a low temperature of 240 °C. However, their electrical properties have strong dependence on the grain size. Specifically, the resistance of grain boundaries decreases dramatically with the increase of grain sizes, while the quality factor has a positive correlation with the grain sizes of Na2WO4 ceramics. Excellent microwave dielectric properties, including permittivity = 5.80, Q × f = 22,000 GHz, and TCF = −70 ppm/°C, are obtained for Na2WO4 ceramics with a grain size of 4.477 μm prepared by cold sintering process.  相似文献   

10.
The effects of aqueous gelcasting and dry pressing on the sinterability and microwave dielectric properties of 90 wt.% (0.75ZnAl2O4-0.25TiO2)-10 wt.% MgTiO3(ZTM) ceramics have been investigated. It is found that aqueous gelcasting could effectively decrease the sintering temperature of ZTM ceramics by 100 °C and acquire more excellent microwave dielectric properties of ZTM ceramics compared with conventional dry pressing. X-ray diffraction (XRD), environment scanning electron microscope (ESEM) and energy-dispersive X-ray spectroscopy (EDX) were used to analyze the phase compositions and microstructures of ZTM ceramics. The results illustrate that the phase compositions are completely uniform no matter what sintering temperature and forming method are adopted. However, the densities, ?r and Q × f values are greatly affected by different forming methods, whereas there are few effects on the τf values. It is observed that ZTM ceramics prepared by aqueous gelcasting exhibit greater densities, more excellent and stable microwave dielectric properties compared with that prepared by dry pressing at the relative low sintering temperatures. However, when the sintering temperature becomes higher, the opposite phenomenon would gradually appear.  相似文献   

11.
Dense SiO2 ceramics with cristobalite phase were prepared by the solid state sintering route, and the microwave dielectric properties were evaluated. The dielectric constant (?r) and temperature coefficient of resonant frequency (τf) of the pure cristobalite ceramics showed little dependence on the sintering temperature. While, the Qf value increased significantly with increasing the sintering temperature, and it was due to the increasing grain size. The optimized microwave dielectric properties with very low ?r of 3.81, high Qf value of 80,400 GHz and low τf of ?16.1 ppm/°C were obtained for the cristobalite ceramics sintered at 1650 °C for 3 h. It was indicated that cristobalite ceramic was a promising candidate as a low-dielectric-constant microwave material for applications in microwave substrates.  相似文献   

12.
To satisfy the requirements of miniaturization and integration of microwave devices, microwave dielectric ceramics with low sintering temperatures and good microwave dielectric properties are particularly important for LTCC materials. In this study, low-cost BaB2O4 ceramics were prepared with different Ba/B ratios using a solid-phase method. Combined with the Raman spectra, the effects of the Raman shift and FWHM of the vibration peaks on the microwave dielectric properties were determined. As a novel microwave dielectric ceramic, BaB2O4 consists of a highly dense structure with optimal microwave dielectric properties (εr = 4.06, Q×f = 23845 GHz, and τf = −7.2 ppm/℃) at a low sintering temperature (840 ℃). In addition, BaB2O4 ceramic is chemically compatible with Ag, making it a promising candidate substrate for microwave communications.  相似文献   

13.
Effects of nonstoichiometry on crystal structure and the microstructure of double perovskite Ba(Mg1/2W1/2)O3 ceramics have been investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Raman spectrometry in this paper. The microwave dielectric properties of the ceramics were studied with a network analyzer at the frequency of about 8–11 GHz. The results show that small deviation from stoichiometric composition has little influence on the crystal structure such as B-site 1:1 ordering degree. Evaporation of BaO was confirmed during the sintering of BMW ceramics, which in turn produce more BaWO4 phase. Ba-deficiency or W-excess in BMW could improve the sinterability and Q×f value, while Ba-excess or W-deficiency could suppress the formation of BaWO4 at the expense of increase in sintering temperature and decrease in Q×f value. Mg nonstoichiometry has little effect on the variation of BaWO4 content and Q×f value. Maximum Q×f value of about 140,000 GHz could be obtained for the Ba-deficient or W-excessive samples after sintering at 1500 °C/2 h or 1550 °C/2 h, respectively. All Mg-nonstoichiometric compositions exhibit high Q×f value of about 120,000 GHz after sintering at 1550 °C/2 h. All well-densified samples have dielectric permittivity of about 19–20 and τf value varied within the range of ?21~?28 ppm/°C.  相似文献   

14.
Low-temperature-fired microwave ceramics are key to realizing the integration and miniaturization of microwave devices. In this study, a facile wet chemical method was applied to synthesize homogenous nano-sized CaF2 powders for simultaneously achieving low-temperature sintering and superior microwave dielectric properties. Pure CaF2 ceramics sintered at 950 °C for 6 h with good microwave dielectric properties (εr = 6.22, Q×f = 36,655 GHz, and τf = ?102 ppm/°C) was achieved. The microwave dielectric properties of the CaF2 ceramics were further improved by introducing LiF as a sintering aid. The sintering temperature of CaF2-based ceramics was effectively lowered from 950 °C to 750 °C with 10 wt% LiF doping, and excellent microwave dielectric properties (εr = 6.37, Q×f = 65,455 GHz, and τf = ?71 ppm/°C) were obtained.  相似文献   

15.
《Ceramics International》2016,42(13):14573-14580
BaO-Sm2O3-5TiO2 (BST5) ceramics with NdAlO3 additions of up to 15 wt% were produced with a solid state reaction method, and their structural and microwave dielectric properties were determined. Experimental results showed that NdAlO3 neither merged nor altered the orthorhombic tungsten bronze structure of the main phase of the produced ceramics (except for a shrinkage in the crystal lattice), but it was segregated in distinct grains in the microstructure of the produced ceramics. However, the amount of NdAlO3 strongly influenced the densification and the microstructure (i.e. grain shape and size) of the produced ceramics. Analysis of the experimental results suggests that the microstructural features can be correlated to the dielectric properties of these ceramics. Accordingly, the dielectric constant (εr) and the temperature coefficient of resonant frequency (τf) of the produced BLT5 ceramics can be tuned with the amount of NdAlO3 additions and the sintering process parameters. The best dielectric properties were achieved for BaO-Sm2O3-5TiO2 ceramics with 7.5% NdAlO3r=73.22, Q×f =10,300 GHz, and τf=−1.05 ppm/°C).  相似文献   

16.
Glass–ceramic composites containing TiO2 (anatase, rutile) and modified borosilicate glasses were prepared and their sintering behaviour, phase evolution, interface reactions, and microwave dielectric properties were investigated as new candidates for low-temperature cofired ceramic (LTCC) materials. It was found that the addition of small amounts of borosilicate glasses lowered the sintering temperature of TiO2 from 1400 to 900 °C. X-ray diffraction results showed that second phases, including Zn2SiO4, were formed when TiO2+zinc-borosilicate glass was used, while no crystalline phase except rutile could be found using unmodified borosilicate glass. High-density TiO2+zinc borosilicate glass material showed promising microwave dielectric properties: relative dielectric constant (εr)=74, quality factor (Q×f)=8000 GHz, and temperature coefficient of resonant frequency (τf)=340 ppm/°C. The effect of borosilicate glasses on the anatase–rutile phase transition was also investigated.  相似文献   

17.
Microwave dielectric ceramic powder of 0.95(Mg0.95Zn0.05)TiO3-0.05CaTiO3 (MCT) has been prepared by solid-state reaction method through single-step calcination at 1150 °C. The green bodies prepared from the calcined powder have been sintered by conventional, susceptor-aided, and hybrid microwave sintering techniques followed by annealing. XRD of calcined and sintered ceramics show (Mg,Zn)TiO3 as a major phase with CaTiO3 as a minor secondary phase. Fractographs of fired ceramics obtained by SEM show similar features in conventional and hybrid microwave types of sintering. Microwave dielectric properties such as relative permittivity(εr), temperature coefficient of resonant frequency(τf), and unloaded quality factors (Qu) for conventional sintered at 1325 °C for 4 h are—εr~19.8, τf< –6 ppm/°C and Qu.f 69,600 GHz at 6 GHz. Ceramics obtained through susceptor-aided microwave sintering at 1325 °C for 4 h show poor fired density. But ceramics got by microwave-hybrid sintering (resistive + microwave) at the same temperature show εr~20.6, Qu.f~81,600 GHz at 6 GHz and τf~?6.9 ppm/°C. The effect of hybrid microwave sintering on the dielectric properties of MCT ceramics is found to be more subtle than microstructural.  相似文献   

18.
《Ceramics International》2016,42(7):7943-7949
This paper reports the investigation of the performance of Li2O–B2O3–SiO2 (LBS) glass as a sintering aid to lower the sintering temperature of BaO–0.15ZnO–4TiO2 (BZT) ceramics, as well as the detailed study on the sintering behavior, phase evolution, microstructure and microwave dielectric properties of the resulting BZT ceramics. The addition of LBS glass significantly lowers the sintering temperature of the BZT ceramics from 1150 °C to 875–925 °C. Small amount of LBS glass promotes the densification of BZT ceramic and improves the dielectric properties. However, excessive LBS addition leads to the precipitation of glass phase and growth of abnormal grain, deteriorating the dielectric properties of the BZT ceramic. The BZT ceramic with 5 wt% LBS addition sintered at 900 °C shows excellent microwave dielectric properties: εr=27.88, Q×f=14,795 GHz.  相似文献   

19.
《Ceramics International》2020,46(17):27063-27070
A series of (1-x) BaWO4-xCuO low-temperature sintered composite ceramics were prepared via co-firing the mixture of BaWO4 and CuO in the first part of this study. The sintering temperature of BaWO4 was decreased from 1150 °C to 950 °C when a little amount of CuO was used as sintering aids. The 0.95BaWO4-0.05CuO sample heated at 950 °C for 4 h had good dielectric performance (Q × f ~ 31,847 GHz, εr ~ 7.99, τf ~ −81.7 ppm/°C). However, the negative τf was too large to apply to practice. To solve this problem, the rutile phase TiO2 nano-particle with a large positive temperature coefficient of +450 ppm/°C was added as τf compensator in the second part of the study. TiO2 powders not merely improved the temperature stability, but promoted the grain growth. However, the εr value increased from 10.5 to 12.6 and Q×f value decreased slightly as TiO2 content increased from 0.30 to 0.45. The 0.65 (0.95BaWO4-0.05CuO) −0.35TiO2 composite ceramic displayed an optimum performance (Q × f ~ 22,012 GHz, εr ~ 11.21, τf ~ −2.9 ppm/°C). Such a sample was chemically compatible with silver, implying that it can be implemented on LTCC applications.  相似文献   

20.
Microwave dielectric properties of corundum-structured Mg4Ta2O9 ceramics were investigated as a function of sintering temperatures by an aqueous sol–gel process. Crystal structure and microstructure were examined by X-ray diffraction (XRD) technique and field emission scanning electron microscopy (FE-SEM). Sintering characteristics and microwave dielectric properties of Mg4Ta2O9 ceramics were studied as a function of sintering temperature from 1250 °C to 1450 °C. With increasing sintering temperature, the density, εr and Qf values increased, saturating at 1300 °C with excellent microwave properties of εr=11.9, Qf=195,000 GHz and τf=?47 ppm/°C. Evaluation of dielectric properties of Mg4Ta2O9 ceramics were also analyzed by means of first principle calculation method and ionic polarizability theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号