首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
A series of new microwave dielectric ceramics with ultralow dielectric loss in Na2O–WO3 binary system were prepared by the modified solid-state reaction method at ultra-low sintering temperatures. Three stable phases, namely Na2WO4, Na2W2O7 and Na2W4O13, were formed in the system. Their stability in the air, phase composition, compatibility with metal electrodes, microstructures, and microwave dielectric properties were investigated. In this binary system, the cubic structure Na2WO4 ceramic sintered at 565°C exhibited the best microwave dielectric properties with a permittivity of 5.6, a Q × f value of 124 200 GHz and a temperature coefficient of −63 ppm/°C at a frequency of 13.1 GHz. The Na2WO4 ceramic is chemically compatible with Ag and Al electrodes. Besides, the Na2WO4 ceramic has favorable stability in the air. Due to the excellent dielectric properties and favorable stability in the air, the Na2WO4 ceramic is a great candidate for LTCC devices.  相似文献   

2.
《Ceramics International》2022,48(8):10713-10720
Ba2Ti9O20 (short for B2T9) ceramics doped with 0.9 mol% MnO2 and y mol% WO3 were prepared by solid-state reaction. The influence of sintering temperature, content of WO3 dopant and the molar ratio x of TiO2: BaCO3 on crystal structure, microstructures as well as microwave dielectric properties of B2T9 ceramics was systematically investigated. The major phase of all samples is B2T9, and the minor phase is BaWO4, respectively. The content of impurity TiO2 alternates with the variation of compositions and sintering temperature, which also leads to different microwave dielectric properties. With the continuous increase of the sintering temperature, the B2T9 phase grains gradually grow larger and transform from rod grains to plate-like grains. The enlargement and flattening of grains also result in the decrease of compactness and deterioration of microwave dielectric properties. It is found that B2T9 ceramics possess better performance when the sintering temperature is 1340°C, which is related to lower TiO2 content, BaWO4, B2T9 grain size, aspect ratio of B2T9 phase and high compactness. When x = 4 and y = 0.2, the relative dielectric constant, quality factor and the temperature coefficient of resonant frequency are 38, 23758 and 7 ppm/°C, respectively.  相似文献   

3.
《Ceramics International》2022,48(5):6819-6825
The influence of grain size on the dielectric properties of Sr0.6Ba0.4Nb2O6 (SBN60) ceramics with a tetragonal tungsten bronze structure was examined. The conventional and two-step sintering procedures were used to fabricate dense and phase-pure SBN60 ceramics with grain sizes ranging from 2.2 μm to 17.3 μm. In the temperature dependence of the dielectric permittivity, all samples showed a relaxor-like broad dielectric peak with a maximum at around 60 °C. The maximum dielectric permittivity and dielectric maximum temperature of the SBN ceramics were found to be less dependent on the grain size. The reason for the grain-size-insensitive dielectric properties of the SBN60 ceramics is discussed based on the analysis of the dielectric properties and Raman spectra.  相似文献   

4.
《Ceramics International》2021,47(19):27545-27552
B2O3 and CuO were codoped into 6Nd[(Zn0.7Co0.3)0.5Ti0.5]O3–4(Na0.5Nd0.5)TiO3 (abbreviated as 6NZCT–4NNT) ceramics as sintering aids. The influences of the sintering aids on the sintering characteristics, microstructure and microwave dielectric properties of the 6NZCT–4NNT ceramics were systematically investigated as a function of the proportion of B2O3 and CuO. Codoping could greatly reduce the sintering temperature from 1410 °C to 1150 °C, indicating that B2O3/CuO are good sintering aids for 6NZCT–4NNT ceramics. The B2O3/CuO sintering aids had no significant impact on the phase purity of the investigated ceramics, even though a solid solution was formed due to Cu2+ ion substitution. However, they had evident influences on the surface morphology and grain size. The average grain size was enlarged with increasing amounts of CuO in the B2O3/CuO sintering aids. Remarkable deterioration of the microwave dielectric properties for 6NZCT-4NNT ceramics was not observed when codoping an appropriate amount of B2O3 and CuO. The 6NZCT–4NNT ceramics codoped with 2.0 mol% B2O3 and 2.0 mol% CuO sintered at 1150 °C for 3 h exhibited a homogeneous microstructure and promising microwave dielectric properties: an appropriate dielectric constant (εr = 49.37), a high quality factor (QF = 47,295 GHz), and a near-zero temperature coefficient of resonant frequency (TCF = +0.9 ppm/°C).  相似文献   

5.
《Ceramics International》2022,48(14):20245-20250
There has been extensive research on microwave dielectric materials considering their application in 5G and 6G communication technologies. In this study, the sintering temperature range of Mg2TiO4–CeO2 (MT-C) ceramics was broadened using a composite of CeO2 and Mg2TiO4 ceramics, and their microwave dielectric performance was stabilized. Low-loss MT-C composite ceramics were prepared using the solid-phase reaction method, and their microwave dielectric properties, microscopic morphologies, and phase structures were investigated. The proposed MT-C ceramics contained Mg2TiO4 and CeO2 phases; their average grain size was maintained at 2–4 μm in the sintering temperature range of 1275–1425 °C, and the samples were uniformly dense without porosity. The cross-distribution of Mg2TiO4 and CeO2 grains in the samples inhibited the growth of ceramic grains, providing uniform and dense surfaces. The dielectric loss of MT-C ceramics remained constant in the temperature range of 1300–1425 °C at 9 × 10?4 (8.45 ≤ f ≤ 8.75 GHz). As opposed to the base material, MT-C ceramics are advantageous owing to their wide sintering temperature range and the stable microwave dielectric properties, and there are suitable substrate materials for further industrial applications.  相似文献   

6.
《Ceramics International》2016,42(7):7943-7949
This paper reports the investigation of the performance of Li2O–B2O3–SiO2 (LBS) glass as a sintering aid to lower the sintering temperature of BaO–0.15ZnO–4TiO2 (BZT) ceramics, as well as the detailed study on the sintering behavior, phase evolution, microstructure and microwave dielectric properties of the resulting BZT ceramics. The addition of LBS glass significantly lowers the sintering temperature of the BZT ceramics from 1150 °C to 875–925 °C. Small amount of LBS glass promotes the densification of BZT ceramic and improves the dielectric properties. However, excessive LBS addition leads to the precipitation of glass phase and growth of abnormal grain, deteriorating the dielectric properties of the BZT ceramic. The BZT ceramic with 5 wt% LBS addition sintered at 900 °C shows excellent microwave dielectric properties: εr=27.88, Q×f=14,795 GHz.  相似文献   

7.
Cold sintering process (CSP) combines transient liquid phase and/or external pressure to assist the densification of ceramics, the sintering mechanism of which is typically dominated by the “dissolution–precipitation” process. In this work, Na2WO4·2H2O dry powders without liquid water have been used as the “liquid phase” to realize the densification of Na2WO4 ceramics. The effects of sintering parameters on the CSP of Na2WO4 ceramics using Na2WO4·2H2O dry powders are systematically studied, including sintering temperature, external pressure, sintering process time and the amount of Na2WO4·2H2O phase. It is found that the “liquid phase,” that is, Na2WO4·2H2O is the key factor for controlling the CSP of Na2WO4 ceramics, and Na2WO4·2H2O hydrate shows an advantage of homogeneous dispersion of liquid water. The sintering temperature affects the densification mechanism involved with plastic deformation and the “dissolution–precipitation,” external pressure accelerates the densification process, and enough sintering process time ensures the completion of CSP. Finally, the optimum cold sintering parameters of Na2WO4 ceramics by Na2WO4·2H2O powders are obtained at 150°C and 240 MPa for 60 min with a pretreatment at 150°C for 30 min.  相似文献   

8.
Novel microwave dielectric ceramics in the Li2MnO3 system with high Q prepared through a conventional solid‐state route had been investigated. All the specimens exhibited single phase ceramics sintered in the temperature range 1140°C–1230°C. The microwave dielectric properties of Li2MnO3 ceramics were strongly correlated with sintering temperature and density. The best microwave dielectric properties of εr = 13.6, Q × f = 97 000 (GHz), and τf = ?5.2 ppm/°C could be obtained as sintered at 1200°C for 4 h. BaCu(B2O5) (BCB) could effectively lower the sintering temperature from 1200°C to 930°C and slightly induced degradation of the microwave dielectric properties. The Li2MnO3 ceramics doped with 2 wt% BaCu(B2O5) had excellent dielectric properties of εr = 11.9, Q × f = 80 600 (GHz), and τf = 0 ppm/°C. With low sintering temperature and good dielectric properties, the BCB added Li2MnO3 ceramics are suitable candidates for LTCC applications in wireless communication system.  相似文献   

9.
Novel glass–free low temperature firing microwave dielectric ceramics Li2CeO3 with high Q prepared through a conventional solid‐state reaction method had been investigated. All the specimens in this paper have sintering temperature lower than 750°C. XRD studies revealed single cubic phase. The microwave dielectric properties were correlated with the sintering conditions. At 720°C/4 h, Li2CeO3 ceramics possessed the excellent microwave dielectric properties of εr = 15.8, Q × f = 143 700 (GHz), and τf  = ?123 ppm/°C. Li2CeO3 ceramics could be excellent candidates for glass‐free low‐temperature co‐fired ceramics substrates.  相似文献   

10.
In this work, novel series of (1 ? x)Li2MO4xTiO2 (M = Mo, W; x = 0.3, 0.4, 0.45, 0.5, 0.6) ceramics were developed for microwave dielectric application. They were prepared via the mixed‐oxide process and the phase composition, microstructures, sintering behaviors, and microwave dielectric properties were investigated. The X‐ray diffraction (XRD) pattern and scanning electron microscope analysis indicated that the Li2MO4 (M = Mo, W) did not react with rutile TiO2 and a stable two‐phase composite system Li2MO4–TiO2 (M = Mo, W) was formed. The XRD pattern of cofired ceramics revealed that some parts of Li2MoO4 phase and very small part of Li2WO4 phase react with Ag to form Ag2MoO4 phase and Ag2WO4 phase, respectively. At x = 0.45–0.5, temperature stable microwave dielectric materials with low sintering temperature (700°C–730°C) were obtained: εr = 10.6–11.0, Qf = 30 060–32 800 GHz, and temperature coefficient of resonant frequency ~0 ppm/°C.  相似文献   

11.
The preparation of Ba0.85Ca0.15 Zr0.1Ti0.9O3 (BCZT) powders by wet chemical methods has been investigated, and the powders used to explore relationships between the microstructure and piezoelectric properties (d33 coefficient) of sintered BCZT ceramics. Sol–gel synthesis has been shown to be a successful method for the preparation of BCZT nanopowders with a pure tetragonal perovskite phase structure, specific surface area up to 21.8 m2/g and a mean particle size of 48 nm. These powders were suitable for the fabrication of dense BCZT ceramics with fine‐grain microstructures. The ceramics with the highest density of 95% theoretical density (TD) and grain size of 1.3 μm were prepared by uniaxial pressing followed by a two‐step sintering approach which contributed to the refinement of the BCTZ microstructure. A decrease in the grain size to 0.8–0.9 μm was achieved when samples were prepared using cold isostatic pressing. Using various sintering schedules, BCZT ceramics with broad range of grain sizes (0.8–60.5 μm) were prepared. The highest d33 = 410.8 ± 13.2 pC/N was exhibited by ceramics prepared from sol–gel powder sintered at 1425°C, with the relative density of 89.6%TD and grain size of 36 μm.  相似文献   

12.
Low temperature sintering and microwave dielectric properties of barium polytitanate (BaO–4TiO2) ceramics prepared by means of polymeric precursor route based on the Pechini process were investigated. Pure and fine BaTi4O9 powders with particle sizes of 100–200 nm were derived by thermal decomposition of amorphous gel precursor (above 750 °C). They formed single orthorhombic BaTi4O9 phase and showed fine and well-dispersed by XRD and SEM observation. The high sintering ability of the prepared powders enabled the fabrication of dielectric ceramics at low sintering temperatures (1200–1300 °C). The well-sintered BaTi4O9 ceramics with high relative densities (95%) were found to show excellent microwave dielectric properties compared to those prepared by conventional method at the same sintering temperature.  相似文献   

13.
《Ceramics International》2022,48(20):29614-29619
In the 5G era, the dielectric materials used in microwave electronic components must have not only have good microwave dielectric characteristics but also excellent structural characteristics. Li2MgTi3O8 (LMT) ceramics have excellent microwave dielectric properties; however, their low bending strength limits their further applications in the 5G era. In this work, the dielectric properties and bending strength of LMT ceramics were optimized by the addition of Si3N4 reinforcing phase using a solid-phase method, and the effects of Si3N4 addition on the sintering properties, microscopic structure, crystalline phase, dielectric properties and bending strength of ceramics were investigated. The X-ray diffraction pattern indicates that all ceramics exhibit spinel structure. Combined with the phenomenon of grain reduction in the SEM graph, it indicates that the addition of Si3N4 can inhibit the grain growth and achieve the purpose of fine-grain strengthening. The dispersion enhancement of second phase particles is also one of the reasons for the increase of bending strength. LMT ceramics doped with 0.5 wt% Si3N4 exhibited the maximum bending strength after sintering at 1050 °C for 4 h, which was 76.97% higher than that of pure LMT ceramics. In addition, the ceramics exhibited outstanding dielectric properties: a dielectric constant of 23.20, quality factor of 49344 GHz, and temperature coefficient of ?5.90 ppm/°C. The high bending strength and good microwave dielectric properties indicate that Si3N4-added LMT ceramics can be effectively applied in the 5G era.  相似文献   

14.
In this work, a sintering route named cold sintering assisted two step sintering process (CSP-TS) is presented to prepare rutile TiO2 ceramics with submicron grain sizes. Cold sintering process at 300 °C with tetrabutyl titanate and water as the liquid phase yields a ‘green body’ with a relatively high density of ~80 %, and finally dense (98.5–99.8 %) rutile TiO2 ceramics with grain sizes of ~600 nm can be obtained in the second sintering process at 950?1000 °C. The microstructural analysis with SEM and TEM indicates that the CSP-TS samples sintered at 950 °C have an obvious phenomenon of recrystallization, accompanying by a decrease of amorphous phases and a formation of clear grain boundaries. Besides, the rutile TiO2 ceramics prepared by CSP-TS possess excellent microwave dielectric properties with relative permittivity of 92.0–98.4 and Q × f values of 27,800?31,900 GHz. Therefore, it is feasible to utilize CSP-TS to prepare ceramics with small grain sizes at low sintering temperatures.  相似文献   

15.
ZTM ceramics comprising of 0.75ZnAl2O4–0.25TiO2 and MgTiO3 at a ratio of 90:10 wt.% are widely used in the field of communication as filters and resonators owing to their excellent microwave dielectric properties. However, the development of such dielectrics with complex structures, as required by microwave devices, is difficult using traditional fabrication methods. In this study, ZTM microwave dielectric ceramics were prepared using the digital light processing (DLP) technology. The influence of the sintering temperature on the phase composition, microstructure, and microwave dielectric properties of ZTM ceramics was investigated. Results showed that with an increase in the sintering temperature, the dielectric constant (εr) and quality factor (Q × f) of ZTM ceramics initially increased owing to the increase in the density and diffusion of ions. However, when the sintering temperature was excessively high, the abnormal growth of crystal grains and micropores led to a decrease in εr and Q × f. The ZTM ceramics sintered at 1450°C exhibited the optimum microwave dielectric properties (εr = 12.99, Q × f = 69 245 GHz, τf = −9.50 ppm/°C) owing to the uniform microstructure and a high relative density of 95.02%. These results indicate that DLP is a promising method for preparing high-performance microwave dielectric ceramics with complex structures.  相似文献   

16.
Low-temperature-fired microwave ceramics are key to realizing the integration and miniaturization of microwave devices. In this study, a facile wet chemical method was applied to synthesize homogenous nano-sized CaF2 powders for simultaneously achieving low-temperature sintering and superior microwave dielectric properties. Pure CaF2 ceramics sintered at 950 °C for 6 h with good microwave dielectric properties (εr = 6.22, Q×f = 36,655 GHz, and τf = ?102 ppm/°C) was achieved. The microwave dielectric properties of the CaF2 ceramics were further improved by introducing LiF as a sintering aid. The sintering temperature of CaF2-based ceramics was effectively lowered from 950 °C to 750 °C with 10 wt% LiF doping, and excellent microwave dielectric properties (εr = 6.37, Q×f = 65,455 GHz, and τf = ?71 ppm/°C) were obtained.  相似文献   

17.
We report a series of ReVO4 (Re = La, Ce) microwave dielectric ceramics fabricated by a standard solid‐state reaction method. X‐ray diffraction and scanning electron microscopy measurements were performed to explore the phase purity, sintering behavior, and microstructure. The analysis revealed that pure and dense monoclinic LaVO4 ceramics with a monazite structure and tetragonal CeVO4 ceramics with a zircon structure could be obtained in their respective sintering temperature range. Furthermore, LaVO4 and CeVO4 ceramics sintered at 850°C and 950°C for 4 h possessed out‐bound microwave dielectric properties: εr = 14.2, Q × f = 48197 GHz, τf = ?37.9 ppm/°C, and εr = 12.3, Q × f = 41 460 GHz, τf = ?34.4 ppm/°C, respectively. The overall results suggest that the ReVO4 ceramics could be promising materials for low‐temperature‐cofired ceramic technology.  相似文献   

18.
Because of large differences in the processing temperature windows between ceramics and polymers, the single-step co-sintering of microwave dielectric ceramic–polymer substrates remains challenging. In this work, a dense (Ca0.65Bi0.35)(Mo0.65V0.35)O4 (CBMVO) ceramic was first prepared through cold sintering at 150°C, under a uniaxial pressure of 300 MPa for 60 min with Li2MoO4 (LMO) as a transient low-temperature solvent. Cold-sintered CBMVO–5 wt% LMO ceramic shows excellent microwave dielectric properties: εr ∼ 11.4, Q × f ∼ 7070 GHz, τf ∼ −7.4 ppm/°C. Moreover, the optimized cold sintering process enabled the preparation of a layered co-sintered (2–2 type) CBMVO–polytetrafluoroethylene composite, which maintained excellent microwave dielectric properties and showed a good heterogeneous interface bonding. The proposed cold sintering co-firing of ceramic–polymer composites in a single step shows great potential for application in the seamless integration between ceramics and polymer substrates.  相似文献   

19.
《Ceramics International》2022,48(18):26387-26392
In this study, nano-grained Gd2Zr2O7 (NGZO) ceramic with a high relative density was prepared by a novel cold sintering process (CSP) assisted by microwave sintering (CSP-MS). The CSP with water as the liquid phase at 280 °C yielded nano-grained ceramic with a relative density of 71.5%. NGZO with a high relative density of 97.1% and average grain size of 73 nm was obtained by subsequent microwave sintering of the cold-sintered sample at 1300 °C. Therefore, CSP-MS is feasible in preparing dense NGZO ceramics with small grain sizes at relatively low sintering temperatures.  相似文献   

20.
Crystal water is a kind of water molecules that are incorporated into the crystal structure of hydrated salts, which are generally decomposed at very low temperatures (usually 100~200 °C). Na2WO4 is a compound that could react with H2O forming the Na2WO4·2H2O hydrated crystal salt under certain conditions. In this work, the cold sintering of Na2WO4 ceramics is studied using a Na2WO4-2H2O chemistry at a low sintering temperature of 120 °C. Their sintering mechanism has been investigated using SEM, TEM, DSC, FTIR, together with the shrinkage rates of the samples. During the sintering process, the intentionally added liquid water reacts with Na2WO4 powders to produce a Na2WO4·2H2O and Na2WO4 composite, and the crystal water can be decomposed from the Na2WO4·2H2O phase under a certain sintering condition. The water in both liquid and solid forms contributes to the densification of Na2WO4 ceramics. Finally, dense Na2WO4 ceramics with excellent properties (permittivity: 5.7; Q × f: 70 000 GHz; TCF: ?70 ppm/°C) have been obtained by removing the residual water after a heat treatment. Such sintering process can be generalized to the densification of other inorganic materials that easily react with liquid water to form hydrated salts, which provides a strategy for the cold sintering with crystal water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号