首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了解决巡飞弹空中上电后在无参考姿态条件下的初始姿态确定问题,采用低成本磁力计、陀螺仪和加速度计(MARG)传感器设计姿态航向参考系统(AHRS),并提出了一种自适应参考矢量权重的快速初始姿态估计(AFCF)算法。首先,提出了三轴传感器使用前的快速误差校准方法;然后,采用快速互补滤波算法进行姿态估计,分析了其权重函数对于初始姿态估计及收敛性等的影响;接着,提出自适应参考矢量权重及自适应姿态估计方法;最后,利用高精度MTI(Milliren Technologies,Inc)传感器数据对算法进行了验证,并在低成本MARG姿态航向参考系统中对算法进行了实现,对比了改进算法及扩展卡尔曼滤波(EKF)算法的性能。实验结果与分析表明:动态条件下采用MTI传感器数据,改进算法能够在初始时刻收敛,比快速互补滤波(FCF)算法提前约4s;解算精度约为±0.6°,初始时刻精度明显优于FCF;硬件测试则表明改进算法的处理时间为0.062ms,仅为EKF算法的1/9,解算精度约为±1.3°,能够满足姿态测量过程快速收敛、高精度、实时性等要求。  相似文献   

2.
针对传统单组MEMS传感器在姿态解算中所面临精度低、稳定性差等问题,提出一种基于多MEMS传感器组合姿态解算方法。载体坐标系各轴采用4组传感器,两两对角安装,将组合传感器测量数据与四元数估计数据做向量积,通过两组模糊和两组PI算法进行组合调节,利用互补滤波进行数据信息融合,通过自适应扩展卡尔曼滤波对修正后角速度进行预测估计,求得姿态角数据。仿真结果分析,所提出的方法较传统姿态解算方法具有更高的精度和稳定性。  相似文献   

3.
基于IMU的机器人姿态自适应EKF测量算法研究   总被引:1,自引:0,他引:1  
为了实现机器人运动学参数标定,提出一种用惯性测量单元(IMU)实时获取其末端姿态信息的方法。然而,IMU在进行机器人动态姿态测量时,存在加速度计信号中有害加速度(除重力加速度之外的其他加速度)叠加,噪声统计特性参数不易获取,陀螺仪信号随时间发生漂移等影响测量精度的问题。针对这些问题,设计了一种自适应拓展卡尔曼滤波(EKF)姿态测量改进算法。基于EKF模型,首先构建第一级量测噪声方差阵,设定权重因子,降低有害加速度对测量结果的影响;其次在Sage-Husa自适应滤波算法中引入了渐消记忆因子的思想,实时跟踪采样数据的量测噪声,构建第二级量测噪声方差阵;最后采用姿态更新的四元数算法进行数据融合,修正陀螺仪信号漂移产生的误差。实验结果表明,相比Sage-Husa自适应滤波算法,该算法峰高时俯仰角和横滚角的平均绝对误差分别降低了50%和36.43%,峰谷时俯仰角和横滚角的平均绝对误差分别降低了14.28%和19.44%,能有效提高姿态测量精度。  相似文献   

4.
在机器人惯性导航研究中,针对传统滤波方法在非线性系统模型下误差大的问题,提出了一种基于改进粒子滤波的机器人姿态解算方法。粒子滤波精度较高且不受系统模型非线性程度的影响,与扩展卡尔曼滤波算法相比在非线性系统应用中有巨大的优势。使用扩展卡尔曼滤波对系统状态进行预测,使粒子分布向高似然区移动。对粒子滤波算法的重采样过程进行了改进,提升了算法的效率。不同的地面环境下系统噪声有较大变化,将地面环境信息作为观测信息融合到系统中,对算法参数进行实时修正能够获得更高的精度。实验结果表明,应用此算法进行姿态解算精度较高,且性能优异。  相似文献   

5.
基于传统转换测量卡尔曼滤波算法,提出了一种二阶去偏转化测量卡尔曼滤波算法。该算法对转换测量方程进行二阶泰勒展开,得到转换测量值误差的均值和方差表达式,并对转换测量方程进行去偏差补偿,再经转换测量卡尔曼滤波,从而显著减小传统滤波算法的线性化误差,提高远距离目标的跟踪精度。仿真结果表明:二阶去偏转换测量卡尔曼滤波(SCMKF)算法跟踪精度明显优于传统的扩展卡尔曼滤波(EKF)算法和转换测量卡尔曼滤波(CMKF)算法,收敛速度比EKF算法至少可提高1倍。  相似文献   

6.
针对低成本惯性传感器系统中由于系统误差、环境干扰等因素造成的姿态计算数据精度低、易发散等问题,设计了一种加速度计和陀螺仪的误差预处理模型,并使用扩展卡尔曼滤波实现其过程。然后基于扩展卡尔曼滤波算法构建两级噪声方差阵和引入渐消记忆因子的自适应扩展卡尔曼滤波算法,实现姿态角的融合过程。最后采用四元数更新算法求解姿态角。实验结果表明:通过自适应扩展卡尔曼滤波算法使姿态解算精度进一步提高。  相似文献   

7.
纯电动汽车的荷电状态(SOC)表示电池组的剩余电量,其直接决定着驾驶员对电动车车剩余里程及对充放电等的判断。由于扩展卡尔曼滤波(EKF)法时其将其中的噪声按均值为零的高斯白噪声处理,因而使SOC估算精度不高乃至出现滤波发散。为防止该类情况发生,提出了一种基于指数冻结因子自适应滤波算法;该算法在Sage-Husa自适应扩展卡尔曼滤波(SHEKF)法的基础上引入发散判据,当有状态变量估算误差变大而发散时,对卡尔曼增益矩阵构造一个自适应指数冻结因子,有效防止了滤波发散,提高了系统稳定性。通过同传统的扩展卡尔曼滤波(EKF)法相比较,试验验证结果表明新方法具有更高的估算精度以及对滤波发散的有效控制。  相似文献   

8.
为提高GPS接收机的定位性能,首先对采样粒子数目进行研究,发现并不是采样粒子数目越多粒子滤波(Particle Filter,PF)的滤波效果就越好。然后针对PF算法中存在的粒子退化现象,研究PF算法与扩展卡尔曼滤波算法(the Extended Kalman Filter,EKF)处理加入了高斯噪声干扰的非线性模型,仿真并分析得到,PF在处理高斯非线性模型的时候滤波效果要优于EKF算法,试验中发现PF算法在粒子数目较大的时候滤波效果远远偏离真实值,试想通过EKF算法计算取得的均值和方差来引导PF算法进行下一步采样,以此建立较好的重要性密度函数。试验表明经过扩展卡尔曼滤波改进的粒子滤波算法相比PF算法更加精确,平缓性更好。  相似文献   

9.
提出了一种改进的Sage-Husa自适应扩展Kalman滤波算法,用于保证多旋翼无人机在噪声统计特性未知且时变、振动为主要扰动源、姿态角高动态变化等飞行条件下飞行姿态角解算的精度与稳定性。该算法采用微机电系统陀螺仪实时动态解算的姿态角方差估计系统噪声方差;并采用自适应滤波算法在线估计量测噪声方差,从而保证滤波的精度与稳定性;同时引入滤波器收敛性判据,结合强跟踪Kalman滤波算法来抑制滤波发散。飞行实验与分析表明:改进算法解算的俯仰角与横滚角均方根误差分别为1.722°和1.182°,明显优于常规的Sage-Husa自适应滤波算法。实验还显示:改进的算法自适应能力强、实时性好、精度高、运行可靠,能够满足多旋翼无人机自主飞行的需要,若对参数进行适当修改,还可应用于其它动态性能要求较高的导航信息测量系统中。  相似文献   

10.
对扩展卡尔曼滤波(EKF)和粒子滤波(PF)的原理进行了介绍。针对故障诊断中的非线性非高斯问题,通过仿真实验比较了EKF和PF的效果,结果证明在非线性条件下,PF的算法优于EKF算法。  相似文献   

11.
针对惯性随钻测量中,由于钻头振动导致系统三轴加速度计数据失真,从而使得解算的钻头姿态角误差较大的问题。提出一种基于小波神经网络(WNN)与自适应滤波(AKF)联合对钻具姿态进行估计的方法,首先建立钻具姿态自适应滤波的状态空间模型,根据估计后的残差不断调整自适应因子,降低姿态的估计误差,提高钻具姿态估计精度;根据滤波器的输入输出建立小波神经网络模型,对比输出误差在线修正网络模型,对姿态信息进行反馈补偿。设计振动台实验以及钻进实验对所提方法验证,其中钻进实验中井斜角误差降低到±1.8°,实验结果表明,所提方法解算精度优于自适应卡尔曼滤波算法,能够有效抑制振动误差对姿态解算的影响,为实际钻井提供理论依据。  相似文献   

12.
针对车辆在实际行驶过程中外界噪声的统计特性无法已知的问题,以车辆纵向动力学模型为基础,提出了自适应扩展卡尔曼滤波(adaptive extended Kalman filter,简称AEKF)的车辆质量及道路坡度估计算法。以动态估计车辆系统中的质量与坡度为研究对象,引入了旋转质量换算系数,建立车辆纵向动力学系统的状态空间模型,考虑了不同时刻的档位匹配与行驶特殊工况的处理。对系统状态方程进行离散化处理,得到系统状态方程与系统测量方程,在扩展卡尔曼滤波(extended Kalman filter,简称EKF)的基础上引入带遗忘因子的噪声统计估计器,通过AEKF对状态方程与测量方程实时更新,进行在线估计和校正噪声统计值,从而解决系统的噪声时变问题。本研究算法与EKF算法估计及实测结果的对比分析表明,本研究算法能够很好地对车辆质量和坡度信号进行有效滤波和估计,在短时间内逐渐收敛并逼近实测值,从而能够合理有效地检测车辆在行驶过程中的状态信息。  相似文献   

13.
一种新型非线性卡尔曼滤波方法   总被引:6,自引:0,他引:6       下载免费PDF全文
提出了一种新型非线性卡尔曼滤波方法—单形无迹求积卡尔曼滤波(SUQKF)方法,该方法通过对单形无迹卡尔曼滤(SUKF)波所用的采样点进行修正,并与高斯-拉盖尔积分准则相结合,构造了一组个数、权系数和空间分布确定的新型高阶采样点,用来进行滤波。同时指出SUKF是SUQKF的特例。将所提方法通过实验与扩展卡尔曼滤波(EKF)、容积求积卡尔曼滤波(CQKF)进行比较,结果表明:SUQKF方法滤波精度高于EKF和CQKF,且收敛速度较快,实时性优于CQKF。  相似文献   

14.
贾瑞才 《光学精密工程》2014,22(12):3280-3286
为了克服应用扩展卡尔曼滤波(EKF)的姿态估计算法的线性化误差问题,提出了一种基于重力/地磁辅助的欧拉角无迹卡尔曼滤波(UKF)姿态估计算法来提升低成本微机电系统(MEMS)的姿态测量精度。应用重力与地磁数据抑制了MEMS姿态误差快速发散问题;将欧拉角作为状态,应用四元数完成时间更新过程中的姿态更新,避免了四元数作为状态的规范化问题及欧拉角姿态更新精度低的问题;由于UKF滤波器不存在线性化误差,故其具有更好的稳定性和姿态估计精度。应用实际MEMS数据开展的算法验证实验显示:与EKF姿态估计算法相比,提出的UKF姿态估计算法得到的俯仰与横滚角精度提高了近20%,航向角精度提高了12.1%。结果表明:本文提出算法的精度更高;然而由于UKF算法对状态协方差估计不足,其收敛时间有所增加。  相似文献   

15.
人体运动跟踪中MEMS姿态测量单元设计与测试   总被引:1,自引:0,他引:1  
人体运动姿态的实时跟踪在运动员辅助训练和康复医学中有广泛应用.设计了应用于人体运动姿态测量的MEMS姿态测量单元.该姿态测量单元包含三轴正交的MEMS加速度计、磁强计和角速率陀螺,集成微控制器以及扩展数据存储的FLASH芯片,单元大小为38 mm×28 mm×13 mm.姿态角解算采用基于四元数的扩展卡尔曼滤波算法.提出了一种利用单轴转台和楔角器进行姿态测量单元3个姿态角误差测试的新方法.测试结果表明:3个姿态角测量误差均小于2°,满足人体运动姿态测量的精度要求.  相似文献   

16.
基于迭代中心差分卡尔曼滤波的飞机姿态估计   总被引:1,自引:0,他引:1  
在飞机姿态估计中,系统模型非线性严重、初始估计误差大和可观测性弱等固有缺陷使得对估计算法的精度要求更高。针对这一问题,给出了一种基于迭代中心差分卡尔曼滤波(ICDKF)的飞机姿态估计方法,并将其应用于由低精度高噪声传感器组成的低成本飞机姿态估计系统。首先建立基于四元数的飞机姿态数学模型,然后用ICDKF方法进行姿态估计,并通过实测数据进行验证。实验结果表明,ICDKF不仅有效地提高了飞机姿态估计的稳定性、收敛速度和滤波精度,而且无需计算雅克比矩阵,实现简单,其性能明显优于标准CDKF和EKF方法。  相似文献   

17.
针对单一的MEMS陀螺仪无法解决本身的易发散和磁力计易受磁场干扰导致引入新的噪声,而带来的姿态估计不精确的问题,提出了一种基于全向AGV的优化互补滤波的姿态解算方法.偏航角不参与四元数解算,在水平姿态角四元数解算的基础上,利用共轭梯度法减小陀螺仪的漂移误差.再引进经过椭球修正后的磁力计数据作为观测量,与偏航角进行一阶互补滤波融合,并确定加权因子.搭建了基于STM32和MEMS传感器为核心的全向AGV实验平台,实验结果表明,该方法能有效抑制陀螺仪易发散和磁力计易受干扰的问题,提高姿态解算的精确性,使姿态解算具有良好的动态和静态性能,同时保证了系统的稳定性.  相似文献   

18.
针对现有滤波方法在低成本航姿参考系统(AHRS)姿态估计应用中存在准确性不足的问题,本文提出一种非线性滤波求解的姿态估计方法.根据四元数姿态表示原理与传感器测量输出模型构建了基于AHRS系统直接形式姿态估计的非线性状态空间模型,采用迭代扩展卡尔曼滤波方法进行滤波求解,实现了对姿态四元数与传感器偏差的实时估计.通过MPU...  相似文献   

19.
针对四旋翼飞行器MEMS惯性测量单元姿态估计过程中存在的漂移和噪声问题,提出了一种基于互补滤波的改进算法。建立了以MPU9250为姿态测量单元的四旋翼飞行器测试平台。分别在静态和动态条件下,收集和比较了不同方法获得的姿态数据,包括信息融合的卡尔曼滤波算法,传统互补滤波的数据融合,以及改进的滤波融合算法。实验结果表明,改进的姿态融合算法在不同条件下具有较高的估计精度和最终姿态角的漂移和噪声误差较小的优点,易于在低成本的飞机控制系统中实现。  相似文献   

20.
卡尔曼滤波器是线性动态系统中应用最广泛的一种状态估计方法。在非线性系统中,扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)被广泛应用,相比扩展卡尔曼滤波器,无迹卡尔曼滤波器准确度更高、更易于实现。在车辆动力学这种强的非线性系统中,无迹卡尔曼滤波器应用广泛。设计了一种基于无迹卡尔曼滤波器的半主动悬架系统状态观测器,讨论了不准确的过程噪声协方差Q和测量噪声协方差R、及测量信号组合的选择和不准确的模型参数对状态观测精度的影响,仿真结果表明不准确的过程噪声和测量噪声协方差、不合适的测量信号选择和模型参数不准确的干扰在不同程度上降低了状态估计精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号