首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
针对传统单组MEMS传感器在姿态解算中所面临精度低、稳定性差等问题,提出一种基于多MEMS传感器组合姿态解算方法。载体坐标系各轴采用4组传感器,两两对角安装,将组合传感器测量数据与四元数估计数据做向量积,通过两组模糊和两组PI算法进行组合调节,利用互补滤波进行数据信息融合,通过自适应扩展卡尔曼滤波对修正后角速度进行预测估计,求得姿态角数据。仿真结果分析,所提出的方法较传统姿态解算方法具有更高的精度和稳定性。  相似文献   

2.
采用自适应无迹卡尔曼滤波的卫星姿态确定   总被引:1,自引:0,他引:1  
针对现有算法卫星姿态确定中模型参数估计不准确,系统存在外界干扰下稳定性差和跟踪精度不足的问题,提出一种自适应无迹卡尔曼滤波算法,对卫星三轴姿态进行估计。首先分析了陀螺和星敏组合定姿的工作原理,然后推导了以误差四元数为状态变量的卫星姿态运动学方程。滤波过程中,该算法引入自适应矩阵,对量测噪声协方差矩阵进行调整;依据滤波发散判别准则,对系统噪声协方差矩阵进行自适应修正,抑制滤波过程中可能的发散情形,获得了良好的自适应性能。实验结果表明,在参数估计不准确时,自适应无迹卡尔曼滤波相比鲁棒自适应UKF算法,三轴估计精度的均方根误差(RMSE)分别提升了30.0%,34.1%,22.4%。该算法基本满足卫星姿态确定的高精度、强鲁棒性等要求。  相似文献   

3.
为了解决巡飞弹空中上电后在无参考姿态条件下的初始姿态确定问题,采用低成本磁力计、陀螺仪和加速度计(MARG)传感器设计姿态航向参考系统(AHRS),并提出了一种自适应参考矢量权重的快速初始姿态估计(AFCF)算法。首先,提出了三轴传感器使用前的快速误差校准方法;然后,采用快速互补滤波算法进行姿态估计,分析了其权重函数对于初始姿态估计及收敛性等的影响;接着,提出自适应参考矢量权重及自适应姿态估计方法;最后,利用高精度MTI(Milliren Technologies,Inc)传感器数据对算法进行了验证,并在低成本MARG姿态航向参考系统中对算法进行了实现,对比了改进算法及扩展卡尔曼滤波(EKF)算法的性能。实验结果与分析表明:动态条件下采用MTI传感器数据,改进算法能够在初始时刻收敛,比快速互补滤波(FCF)算法提前约4s;解算精度约为±0.6°,初始时刻精度明显优于FCF;硬件测试则表明改进算法的处理时间为0.062ms,仅为EKF算法的1/9,解算精度约为±1.3°,能够满足姿态测量过程快速收敛、高精度、实时性等要求。  相似文献   

4.
贾瑞才 《光学精密工程》2014,22(12):3280-3286
为了克服应用扩展卡尔曼滤波(EKF)的姿态估计算法的线性化误差问题,提出了一种基于重力/地磁辅助的欧拉角无迹卡尔曼滤波(UKF)姿态估计算法来提升低成本微机电系统(MEMS)的姿态测量精度。应用重力与地磁数据抑制了MEMS姿态误差快速发散问题;将欧拉角作为状态,应用四元数完成时间更新过程中的姿态更新,避免了四元数作为状态的规范化问题及欧拉角姿态更新精度低的问题;由于UKF滤波器不存在线性化误差,故其具有更好的稳定性和姿态估计精度。应用实际MEMS数据开展的算法验证实验显示:与EKF姿态估计算法相比,提出的UKF姿态估计算法得到的俯仰与横滚角精度提高了近20%,航向角精度提高了12.1%。结果表明:本文提出算法的精度更高;然而由于UKF算法对状态协方差估计不足,其收敛时间有所增加。  相似文献   

5.
利用自适应卡尔曼滤波实现光电跟踪中的复合控制   总被引:2,自引:0,他引:2  
为了在光电跟踪控制系统中实现复合控制以提高跟踪精度,构建了基于模型自适应卡尔曼滤波算法的复合控制结构。首先,利用跟踪脱靶量数据和仪器位置数据合成目标角位置数据;然后,利用模型自适应卡尔曼滤波算法对目标角位置数据进行滤波估计以获得目标角速度信息;最后,将目标角速度信息前馈到速度回路,从而构成复合控制系统。实验结果表明:采用复合控制结构后,目标跟踪精度提高了50%。基于模型自适应卡尔曼滤波算法的复合控制技术能够在保持原反馈控制系统稳定性的条件下提高跟踪精度。  相似文献   

6.
针对传统卡尔曼滤波算法在进行车辆实时运动过程中难以精准定位问题,提出一种基于运动状态自适应的交互多模型卡尔曼滤波(Interacting multiple model Kalman filter,IMMKF)与多基站到达方向(Direction-of-arrival,DOA)相融合进行车辆位置实时估计算法。基于无偏估计器对测量噪声协方差进行实时更新并将其嵌入标准卡尔曼滤波算法中实现自适应交互多模型卡尔曼滤波。针对车辆不同运动状态及动态行驶环境对车辆定位估计精度的影响,构建自适应交互多模型卡尔曼滤波器与多基站信息融合算法进行车辆位置实时估计,考虑不同车速与不同基站数等行驶工况下车辆定位精度的变化趋势,实现车辆实时位置的准确估计。利用PreScan-Simulink联合仿真平台进行虚拟仿真验证和实车试验验证。结果表明,基于交互多模型卡尔曼滤波与到达方向角的融合算法相对标准的卡尔曼滤波估计精度高,较好地改善了传统单一模型的卡尔曼滤波算法在进行车辆实时运动状态估计过程中精准定位问题,实车试验验证了提出算法对车辆定位精度较传统卡尔曼滤波算法的精度提高了一个数量级,实现了更精确的车辆位置估计。  相似文献   

7.
人体运动跟踪中MEMS姿态测量单元设计与测试   总被引:1,自引:0,他引:1  
人体运动姿态的实时跟踪在运动员辅助训练和康复医学中有广泛应用.设计了应用于人体运动姿态测量的MEMS姿态测量单元.该姿态测量单元包含三轴正交的MEMS加速度计、磁强计和角速率陀螺,集成微控制器以及扩展数据存储的FLASH芯片,单元大小为38 mm×28 mm×13 mm.姿态角解算采用基于四元数的扩展卡尔曼滤波算法.提出了一种利用单轴转台和楔角器进行姿态测量单元3个姿态角误差测试的新方法.测试结果表明:3个姿态角测量误差均小于2°,满足人体运动姿态测量的精度要求.  相似文献   

8.
提出了一种改进的Sage-Husa自适应扩展Kalman滤波算法,用于保证多旋翼无人机在噪声统计特性未知且时变、振动为主要扰动源、姿态角高动态变化等飞行条件下飞行姿态角解算的精度与稳定性。该算法采用微机电系统陀螺仪实时动态解算的姿态角方差估计系统噪声方差;并采用自适应滤波算法在线估计量测噪声方差,从而保证滤波的精度与稳定性;同时引入滤波器收敛性判据,结合强跟踪Kalman滤波算法来抑制滤波发散。飞行实验与分析表明:改进算法解算的俯仰角与横滚角均方根误差分别为1.722°和1.182°,明显优于常规的Sage-Husa自适应滤波算法。实验还显示:改进的算法自适应能力强、实时性好、精度高、运行可靠,能够满足多旋翼无人机自主飞行的需要,若对参数进行适当修改,还可应用于其它动态性能要求较高的导航信息测量系统中。  相似文献   

9.
基于IMU的机器人姿态自适应EKF测量算法研究   总被引:1,自引:0,他引:1  
为了实现机器人运动学参数标定,提出一种用惯性测量单元(IMU)实时获取其末端姿态信息的方法。然而,IMU在进行机器人动态姿态测量时,存在加速度计信号中有害加速度(除重力加速度之外的其他加速度)叠加,噪声统计特性参数不易获取,陀螺仪信号随时间发生漂移等影响测量精度的问题。针对这些问题,设计了一种自适应拓展卡尔曼滤波(EKF)姿态测量改进算法。基于EKF模型,首先构建第一级量测噪声方差阵,设定权重因子,降低有害加速度对测量结果的影响;其次在Sage-Husa自适应滤波算法中引入了渐消记忆因子的思想,实时跟踪采样数据的量测噪声,构建第二级量测噪声方差阵;最后采用姿态更新的四元数算法进行数据融合,修正陀螺仪信号漂移产生的误差。实验结果表明,相比Sage-Husa自适应滤波算法,该算法峰高时俯仰角和横滚角的平均绝对误差分别降低了50%和36.43%,峰谷时俯仰角和横滚角的平均绝对误差分别降低了14.28%和19.44%,能有效提高姿态测量精度。  相似文献   

10.
针对在复杂应力条件下扩展卡尔曼滤波估计锂离子电池SOC的估计精度不高问题,提出了一种改进扩展卡尔曼滤波算法的锂离子电池SOC估计方法。通过运用Sage-Husa自适应算法来对系统噪声与观测噪声进行修正。最后设计了DST工况实验进行验证,实验结果表明,相比Ah法与扩展卡尔曼滤波估计法,改进扩展卡尔曼滤波估计法具有更高的精度与收敛性,最大估计误差不超过0.7%,是一种行之有效的方法。  相似文献   

11.
针对四旋翼飞行器MEMS惯性测量单元姿态估计过程中存在的漂移和噪声问题,提出了一种基于互补滤波的改进算法。建立了以MPU9250为姿态测量单元的四旋翼飞行器测试平台。分别在静态和动态条件下,收集和比较了不同方法获得的姿态数据,包括信息融合的卡尔曼滤波算法,传统互补滤波的数据融合,以及改进的滤波融合算法。实验结果表明,改进的姿态融合算法在不同条件下具有较高的估计精度和最终姿态角的漂移和噪声误差较小的优点,易于在低成本的飞机控制系统中实现。  相似文献   

12.
针对惯性随钻测量中,由于钻头振动导致系统三轴加速度计数据失真,从而使得解算的钻头姿态角误差较大的问题。提出一种基于小波神经网络(WNN)与自适应滤波(AKF)联合对钻具姿态进行估计的方法,首先建立钻具姿态自适应滤波的状态空间模型,根据估计后的残差不断调整自适应因子,降低姿态的估计误差,提高钻具姿态估计精度;根据滤波器的输入输出建立小波神经网络模型,对比输出误差在线修正网络模型,对姿态信息进行反馈补偿。设计振动台实验以及钻进实验对所提方法验证,其中钻进实验中井斜角误差降低到±1.8°,实验结果表明,所提方法解算精度优于自适应卡尔曼滤波算法,能够有效抑制振动误差对姿态解算的影响,为实际钻井提供理论依据。  相似文献   

13.
在机器人惯性导航研究中,针对传统滤波方法在非线性系统模型下误差大的问题,提出了一种基于改进粒子滤波的机器人姿态解算方法。粒子滤波精度较高且不受系统模型非线性程度的影响,与扩展卡尔曼滤波算法相比在非线性系统应用中有巨大的优势。使用扩展卡尔曼滤波对系统状态进行预测,使粒子分布向高似然区移动。对粒子滤波算法的重采样过程进行了改进,提升了算法的效率。不同的地面环境下系统噪声有较大变化,将地面环境信息作为观测信息融合到系统中,对算法参数进行实时修正能够获得更高的精度。实验结果表明,应用此算法进行姿态解算精度较高,且性能优异。  相似文献   

14.
《机械科学与技术》2016,(10):1550-1555
针对现有工业机器人误差,特别是工业机器人末端轨迹精度低、实时监测计算复杂等问题,提出利用扩展卡尔曼滤波器和配准算法组合提高机器人末端轨迹精度的算法,解决了机器人末端精度低、控制补偿不准确等问题。建立SCARA机器人数学模型,同时建立基于扩展卡尔曼滤波和配准算法的机器人误差补偿模型,通过扩展卡尔曼滤波、配准算法进行误差补偿,实现了末端精度的提高。通过仿真验证,分析对比机械手末端轨迹补偿前后的误差,证明了算法的可靠性与准确性。  相似文献   

15.
针对传统容积卡尔曼滤波算法在进行车辆关键状态估计时要求噪声统计特性已知的问题,提出一种噪声自适应容积卡尔曼滤波(Noise adaptive cubature Kalman filter, NACKF)算法来进行车辆关键状态的估计。基于次优无偏极大后验估计器对量测噪声协方差进行实时更新并将其嵌入到标准容积卡尔曼算法中实现自适应容积卡尔曼滤波。针对车辆不同子系统间耦合特性对滤波精度的影响,构建双重自适应容积卡尔曼滤波器分别进行侧向力与质心侧偏角的估计,两者在估计过程中互为输入构成闭环反馈,利用分布式模块化结构弱化系统耦合特性对估计精度的影响,实现轮胎侧向力与质心侧偏角的实时准确估计。利用Simulink-Carsim联合仿真平台进行仿真验证和实车试验验证。结果表明,基于双重自适应容积卡尔曼滤波的估计算法相对标准容积卡尔曼滤波估计精度更高,较好地改善了传统容积卡尔曼滤波器在噪声先验统计特性未知条件下非线性滤波精度下降的问题。  相似文献   

16.
针对汽车状态估计中模型参数的变化和观测噪声的时变特性,提出了递推最小二乘法与模糊自适应扩展卡尔曼滤波相结合的汽车状态估计算法。为实现模型参数与观测噪声的实时更新,建立了基于三自由度非线性车辆动力学模型的算法,首先利用递推最小二乘法对汽车的总质量进行估计,其次建立了模糊控制器对扩展卡尔曼滤波的观测噪声进行实时跟踪。在搭建的CarSim与MATLAB/Simulink联合仿真平台中验证了该算法的有效性,结果表明该算法估计精度高于传统扩展卡尔曼滤波算法,研究结果为汽车的主动安全控制提供了理论支持。  相似文献   

17.
纯电动汽车的荷电状态(SOC)表示电池组的剩余电量,其直接决定着驾驶员对电动车车剩余里程及对充放电等的判断。由于扩展卡尔曼滤波(EKF)法时其将其中的噪声按均值为零的高斯白噪声处理,因而使SOC估算精度不高乃至出现滤波发散。为防止该类情况发生,提出了一种基于指数冻结因子自适应滤波算法;该算法在Sage-Husa自适应扩展卡尔曼滤波(SHEKF)法的基础上引入发散判据,当有状态变量估算误差变大而发散时,对卡尔曼增益矩阵构造一个自适应指数冻结因子,有效防止了滤波发散,提高了系统稳定性。通过同传统的扩展卡尔曼滤波(EKF)法相比较,试验验证结果表明新方法具有更高的估算精度以及对滤波发散的有效控制。  相似文献   

18.
针对常规的微型姿态参照系统(AHRS)算法存在过载干扰和滤波发散的问题,设计了一种基于三分量地磁滤波技术的微型AHRS算法。采用一种简化的Sage-Husa自适应滤波算法进行了AHRS的信息融合;采用姿态误差角和陀螺漂移作为状态变量,进行了自适应滤波的时间更新,采用三分量地磁矢量作为观测量,进行了自适应滤波的量测更新;最后,对该算法进行了半物理仿真实验。实验结果表明,该算法能够有效地减小高过载造成的姿态测量误差,在2 g线振动测试条件下,该算法的俯仰角和横滚角的测量精度优于0.75°,航向角精度优于1.87°;与常规的算法相比,系统的抗过载能力提高了近3.2倍。该算法测量精度高、抗过载性好,具有很强的自适应能力,尤其适用于低铁磁干扰、高过载的工作环境。  相似文献   

19.
为了实现基于多传感器技术的机器人末端姿态的精确检测,通过对多传感器数据融合算法进行研究,提出构建基于九轴无线姿态传感器(LPMS-B)及相关数据融合算法的检测方法。该方法首先提出一种改进的高斯牛顿算法(IGN)实现了对加速度计和磁强计采集的数据的姿态四元数寻优估计,其次,通过更新的四元数算法对陀螺仪采集的数据求取四元数,最后,将改进的高斯牛顿算法和更新的四元数算法得到的四元数进行互补滤波,求取精度更高的四元数,解算出姿态角,并在OTC机器人平台上进行试验。试验研究结果表明,该检测方法使得姿态检测精度相比于四元数法、卡尔曼滤波和实际测量值有着较大的提高,能更准确的获得机器人末端精度。  相似文献   

20.
纵向车速和质心侧偏角是车辆主动安全控制系统的关键参考状态信号,通常采用卡尔曼滤波算法估计。当系统噪声和测量噪声的统计特性存在不确定性时,不仅估计精度会降低,甚至导致估计器发散。结合分布式驱动电动汽车4个车轮转矩和转速可直接测量的特点,提出一种车辆状态自适应扩展卡尔曼滤波估计方法。基于量纲一化新息平方实现车辆状态估计有效性检测,提出滑动窗口长度自适应调整规则;根据新息统计特性提出卡尔曼滤波增益和状态估计误差协方差矩阵的自适应调整策略,及基于车辆状态估计稳态误差和动态响应速度的自适应参数确定原则。数值仿真和试验证明,所提出的车辆状态估计方法,不仅估计精度较高,而且实时性和易用性较强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号