首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 609 毫秒
1.
用具有良好电子传输/空穴阻挡性能的BPhen(4,7-diphenyl-1,10-phenanthroline)作基质,Eu(DBM)3pyzphen(pyzphen=pyrazino-[2,3-f][1,10]-phenanthroline,DBM=Dibenzoylmethane)作发射材料,成功制得了高效率、高亮度的有机电致发光器件OLED.器件的最大外量子效率为2.5%,最大电流效率为5.3 cd/A,最大亮度为1 320 cd/m2.在亮度为200和1 000 cd/m2时,器件的色坐标分别为(0.66,0.33)和(0.65,0.34).深入研究了该器件的发光机制,发现在电致发光(EL)过程中,载流子直接被Eu(DBM)3pyzphen陷获是主要的发光机制,同时在BPhen与Eu(DBM)3pyzphen间还存在着有效的能量传递.  相似文献   

2.
以8-羟基喹啉(q)和1,3-二苯基-1,3-丙二酮定向合成了有机小分子配合物Znq(DBM),将其作为发光层制备了单色有机电致发光器件(OLED)。在结构为ITO/m-MTDATA(5nm)/NPB(40nm)/Znq(DBM)(60nm)/LiF(0.5nm)/Al(100nm)的器件中,启亮电压为5V,最大亮度达到4 575cd/m2。同时又在器件中引入间隔层BCP,研究其不同厚度对OLED性能的影响。在结构为ITO/m-MTDATA(5nm)/NPB(40nm)/BCP(x nm)/Znq(DBM)(60nm)/LiF(0.5nm)/Al(100nm)的器件中,当BCP层厚为0nm时,发光颜色为黄绿色;当BCP层厚为1nm时,发光颜色为白色,色坐标为(0.29,0.33),最大亮度为2 231cd/m2;当BCP层厚为5nm时,发光颜色为蓝色。根据器件结构和性能,讨论了其内部机理。  相似文献   

3.
讨论了基于蓝色荧光染料DSA-ph作为发光层的蓝色有机电致发光器件,器件结构为:ITO/2T-NATA/NPBX/DSA-ph(xnm)/TAZ/Bphen/LiF/Al。通过改变DSA-ph的超薄层厚度,相应器件的性能指标也有所不同。研究表明,在超薄层厚度为0.5nm,驱动电压为4V时,器件的最大发光效率为6.57cd/A;在超薄层厚度为0.3nm时,驱动电压为10V时,器件的最大亮度为5 122cd/m^2。器件的色坐标在(0.17,0.36)附近,属于蓝光发射。  相似文献   

4.
利用多掺杂体系制备白色OLED的研究   总被引:1,自引:0,他引:1  
王勇  赵谡玲  徐征  张福俊  黄金昭 《光电子.激光》2007,18(11):1286-12,881,292
利用PVK、Eu(aspirin)3phen稀土配合物和Alq3共掺杂体系,制备了PVK:Eu(aspirin)3phen:Alq3为发光层、结构为ITO/PVK:Eu(aspirin)3phen:Alq3/BCP/Alq3/Al的有机发光二极管显示器件(OLED).保持PVK和Eu(aspirin)3phen的质量比为5∶1不变,改变PVK和Alq3的质量比,当PVK和Alq3的质量比为10∶1,得到了效果较好的白光,在电压为16 V时,器件色坐标达到(0.32,0.31),亮度为150 cd/m2.分析了掺杂体系中的能量传递过程以及器件的电致发光(EL)机理.  相似文献   

5.
为了能够有效地提高电子的注入和传输能力,改善有机电致发光器件的性能,本文利用CsN3作为n型掺杂剂,对有机电子传输材料Bphen进行n型电学掺杂,制备了结构为ITO/MoO3(2 nm)/NPB(50 nm)/Alq3(30 nm)/Bphen(15 nm)/Bphen:CsN3(15 nm,x%,x=10,15,20)/Al(100 nm)的器件。实验结果表明,CsN3是一种有效的n型掺杂剂,以掺杂层Bphen:CsN3 作为电子传输层,可以有效地降低电子的注入势垒,改善器件的电子注入和传输能力,从而降低器件的开启电压,同时提高了器件的亮度和发光效率。在掺杂浓度为10%时器件的性能最优,开启电压仅为2.3 V,在7.2 V的驱动电压下,达到最大亮度29 060 cd/m2,是非掺杂器件的2.5倍以上。当驱动电压为6.6 V时,达到最大电流效率3.27 cd/A。而当掺杂浓度进一步提高时,由于Cs扩散严重,发光区形成淬灭中心,造成器件的效率下降。  相似文献   

6.
以2-甲基-8-羟基喹啉配体和ZnSO_4·7H_2O合成了有机金属配合物Zn(Meq)_2,并开展了材料的光电特性研究。当双层器件结构为ITO/NPB/Zn(Meq)_2/LiF/Al时,实现了绿光发射,EL峰位位于542 nm,最大亮度和效率分别为7 429 cd/m~2和1.80 cd/A。而当掺杂器件结构为ITO/NPB/Zn(Meq)_2:DCJTB/Alq_3/Li F/Al时,实现了红橙光发射,EL峰位位于580 nm,最大亮度和效率分别为6 075 cd/m~2和1.02 cd/A。结合器件结构和性能,讨论了相关工作机制。  相似文献   

7.
利用磷光敏化和BCP的空穴阻挡作用,制备了结构为:ITO/2T-NATA(15nm)/NPBX(20nm)/rubrene(0.2nm)/NPBX(5nm)/CBP∶6%Ir(ppy)3∶15%ADN(30nm)/BCP(10nm)/Alq3(25nm)/LiF(0.5nm)/Al的有机白光器件。器件在电压为7V的情况下,最大发光效率达到5.80cd/A,在12V的电压下最大亮度达12395cd/m2,色坐标为(0.30,0.30),接近白光等能点(0.33,0.33),比非敏化器件最大发光效率3.10cd/A(7V)和最大亮度10390cd/m2(12V)及非敏化不加空穴阻挡层BCP的器件最大发光效率2.13cd/A(8V)和最大亮度8852cd/m2(12V)的性能提高很多。  相似文献   

8.
采用Alq3、TPBi和BCP分别作为电子传输材料和空穴阻挡材料,制备了三种器件,研究了用不同的空穴阻挡材料对器件性能的影响。实验结果表明:只采用30nm Alq3作电子传输层的器件的电流效率最大值为7.84cd/A(9V),而采用10nm Alq3作电子传输层,插入20nm的BCP和TPBi作空穴阻挡层的器件获得的电流效率最大值分别为9.72cd/A和12.21cd/A(9V)。这些结果说明空穴阻挡材料能改善器件的性能,TPBi比以BCP作为空穴阻挡层的器件性能有了很大的改善,制备的白色OLED的最大亮度和电流效率分别为22400cd/m2(17V)和12.21cd/A(9V)。  相似文献   

9.
通过结构为ITO/2T-NATA(20nm/NPBx(20nm)/MCzHQZn(30nm)/BCP(10nm)/Alq3(20nm)/LiF(0.5nm)/Al、ITO/2T-NATA(30nm/MCzHQZn(30nm)/BCP(10nm)/Alq3(30nm)/LiF(0.5nm)/Al和ITO/2T-NATA(20nm/MCzHQZn(30nm)/NPBx(16nm)/BCP(10nm)/Alq3(25nm)/LiF(0.5nm)/Al的3组有机电致发光器件(OLED),证明了MCzHQZn既具有空穴传输特性,又具有较好的发光特性。MCzHQZn在器件1中作发光层,器件最大亮度在电压16V时达到3692cd/m2,电压13V时的最大效率为0.90cd/A,发光的峰值波长为564nm;MCzHQZn在器件2中既作发光层又作空穴传输层,器件最大亮度在电压为13V时达到1929cd/m2,电压12V时的最大效率为0.57cd/A,发光的峰值波长也为564nm;MCzHQZn在器件3中作空穴传输层,由NPBx作发光层,器件最大亮度在电压为14V时达到3556cd/m2,电压9V时的最大效率为1.08cd/A,发光的峰值波长为444nm。  相似文献   

10.
具有NPB:DPVBi掺杂层的有机白光器件的研究   总被引:1,自引:0,他引:1  
制作了结构为ITO/NPB(50nm)/NPB;DPVBi(10:1,30nm)/Alqs(20nm)/LiF(1nm)/Al的有机白光器件。由于掺杂层NPB:DPVBi的引入,电子及空穴容易被DPVBi及NPB俘获,提高激子的复合,进一步提高监光的发光能力。发光区从Alq3的发光峰逐渐变为DPVBi的发光和NPB发光增强,从而发光峰值发生变化。该器件的最大亮度和效率分别为22V时4721cd/m^2和5V时0.80cd/A。  相似文献   

11.
Double layer organic electronic luminescence diodes (OLEDs) based on europium(dibenzoylmethanato)3monophenanthroline [Eu(DBM)3bath], ITO/N,N′-diphenyl-N,N′-bis(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine (TPD)/Eu(DBM)3bath/LiF/Al have been fabricated. With increasing the thickness of hole transporting layer, the maximum EL efficiency was increased, and the EL efficiency of 10 cd/A was achieved when the thickness of TPD layer was 80 nm; however, at high current density, the EL efficiency of all devices was decreased drastically. Besides, the evolution of EL emission spectra with increasing operating voltage was found, the mechanisms of the symmetry around the ion improved and the annihilation of excited state of Eu(DBM)3bath were discussed in explaining this phenomenon.  相似文献   

12.
《Organic Electronics》2003,4(2-3):149-154
The mechanisms of exciplex formation between hole-transporting material N,N-diphenyl-N,N-bis(3-methylphenyl)-1,1-diphenyl-4,4-diamine (TPD) and electron-transporting materials tris(dibenzoylmethanato)-mono(bathophenanthroline)-rare earth (RE(DBM)3bath) in TPD/RE(DBM)3bath bilayer electroluminescence (EL) devices were studied. The formation process was identified by using fluorescent dye as dopant. It was found that interaction between the excited states of RE(DBM)3bath and the ground state of TPD molecules resulted in the exciplex. The recombination zone of the TPD/RE(DBM)3bath device was proved to be mainly in the RE(DBM)3bath layer near the organic interface. On the other hand, by using dopant as efficient energy acceptor in RE-complex hosts, we found that exciplex emission was quenched thoroughly and efficient red light emission was observed, proving that RE(DBM)3bath may act as an efficient energy donor in EL devices. In the case of Eu3+ as the central ion, maximum EL efficiency and highest brightness of red light emission reached 2.6% and 2000 cd/m2, respectively.  相似文献   

13.
In this work, electroluminescent (EL) performances of a green iridium complex (tfmppy)2Ir(tpip) were significantly improved by utilizing wide energy gap iridium complexes FK306 and FIrpic as sensitizers. Due to the low-lying energy levels, the co-doped FK306 or FIrpic molecules function as electron trappers, which are helpful in balancing holes and electrons on (tfmppy)2Ir(tpip) molecules and in broadening exciton recombination zone. Consequently, the co-doped devices displayed high EL efficiencies and slow efficiency roll-off. Compared with FIrpic, FK306 acts as a more effective sensitizer because of its relatively lower energy levels. Consequently, highly efficient green EL device with maximum current efficiency, power efficiency and brightness up to 102.29 cd/A (external quantum efficiency (EQE) of 25.3%), 88.67 lm/W and 96,268 cd/m2, respectively, was realized by optimizing the co-doping concentration of FK306. Even at the practical brightness of 1000 cd/m2, EL current efficiency up to 92.93 cd/A (EQE = 23%) can still be retained.  相似文献   

14.
A new rare earth complex Tb(p-CIBA)3phen was synthesized and introduced into organic tight emitting devices (OLEDs) as emitting material. The Tb(p-CIBA)3phen was doped into PVK to improve the filmforming and hole-transporting property. Two kinds of devices were fabricated. The device structure is as the following. Single-layer device: ITO/PVK: Tb (p-CIBA) 3 phen /LiF/Al; double-layer device: ITO/PVK: Tb(p-CIBA)3phen/AIQ/LiF/AI. The performances of both devices were investigated carefully. We found that the emission of PVK was completely restrained,and only the green emission was observed from the electroluminescence. The full width at half maximum (FWHM) was less than 10 nm. The highest EL brighthess of the single-layer device is 25.4 cd/cm^2 at a fixed bias of 18 V,and the highest EL brightness of the double-layer device reaches 234.8 cd/cm^2 at a voltage of 20 V.  相似文献   

15.
连加荣  袁永波  周翔   《电子器件》2008,31(1):36-39
通过引入LiF,明显提高了基于八羟基喹啉铝双层有机发光二极管的发光效率.2 nm 厚的 LiF 空穴阻挡层可将器件的发光效率从 2.6 cd/A 提高到 6.3 cd/A,研究结果表明,LiF 空穴阻挡层可以有效调节空穴的注入与传输,平衡器件中的空穴与电子,提高有机发光二极管的发光效率.  相似文献   

16.
用磷光材料Ir(ppy)3制备了高效率顶部发射绿色有机发光二极管(OLED),器件的结构为:ITO/Ag/NPB/Ir(ppy)3(5wt%):TPBI/TPBI/LiF/Al。研究发现与传统的无微腔结构器件相比顶部发射器件的性能有大幅度提高,其最大效率为18cd/A。通过使用F-P腔,器件的电致发光(EL)寿命由7.6μs降低为7.1μs,有效地缓解了效率随电流密度增大而下降的问题。顶部发射器件EL共振的主峰位于505nm处,发射光谱半峰宽(FWHM)窄化为23nm,色纯度为(x=0.122,y=0.671),发射光随探测角度变化较小。最后,分析了其瞬态光电性能变化原因。  相似文献   

17.
Near‐infrared‐emitting electroluminescent (EL) devices using blue‐light‐emitting polymers blended with the Yb complexes Yb(DBM)3phen (DBM = dibenzoylmethane), Yb(DNM)3phen (DNM = dinaphthoylmethane), and Yb(TPP)L(OEt) (L(OEt) = [(C5H5)Co{P(O)Et2}3]) have been studied. EL devices composed of Yb(DNM)3phen blended with PPP‐OR11 showed enhanced near‐IR output at 977 nm when compared to those fabricated with Yb(DBM)3phen/PPP‐OR11 blends. The maximum near‐IR external efficiencies of the devices with Yb(DBM)3phen and Yb(DNM)3phen are, respectively, 7 × 10–5 (at 6 V and at 0.81 mA mm–2) and 4 × 10–4 (at 7 V, and 0.74 mA mm–2). The optimal blend composition for EL device performance consisted of PPP‐OR11 blended with 10–20 mol‐% Yb(DNM)3phen. A device fabricated using Yb‐(TPP)L(OEt)/PPP‐OR11 showed significantly enhanced near‐IR output efficiency, and future efforts will focus on devices fabricated using porphyrin‐based materials.  相似文献   

18.
In order to obtain high-efficiency monochromatic red emission in polymer light-emitting devices, a tris(dibenzoylmethanato)(dipyrido(3,2-a:2′,3′-c)phenazine) europium [Eu(DBM)3(DPPZ)] doped single-emissive-layer devices were fabricated using a blend of poly(9,9-dioctyl-fluorence) and 2-tert-butyl-phenyl-5-biphenyl-1,3,4-oxadiazole as a host matrix by solution process. Significantly improved electro-luminescent properties with sharp red emission at 611.5 nm were displayed in the Eu(DBM)3(DPPZ)-doped devices at dopant concentrations from 1 to 8 wt.%. The highest luminance up to 1783 cd/m2 at 2 wt.% dopant concentration, as well as the maximum external quantum efficiency of 2.5% and current efficiency of 3.8 cd/A were obtained at 1 wt.% dopant concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号