首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 625 毫秒
1.
戴骐 《食品科学》2007,28(12):376-378
建立了电感耦合等离子体发射光谱(ICP-AES)测定香菇中镉含量过程的相应数学模型,对数学模型中各个参数进行不确定度来源分析,分别对A类不确定度或B类不确定度进行了评定。按国际通用方法对各不确定度分量合成和扩展,得到该方法的不确定度评定。结果表明:标准溶液的配制、标准曲线拟合线性方程及样品溶液的定容是不确定度的主要来源。  相似文献   

2.
目的评定微波消解-石墨炉原子吸收光谱法测定水产品中铅含量的不确定度。方法依据JJF1059.1-2012《测量不确定度评定与表示》,综合测量结果数学模型和实验过程,分析不确定度来源,量化各不确定度分量,计算合成不确定度,最终得到铅含量测定的扩展不确定度。结果当水产品中铅含量的测定结果为0.33 mg/kg时,在95%的置信区间下,其扩展不确定度为0.164μg/g(k=2)。评定结果表明,实验过程的不确定度主要来源于标准曲线拟合,仪器重复测量和标准溶液配制。结论不确定度评定适用于微波消解-石墨炉原子吸收光谱法测定水产品中铅含量的不确定度分析,对检测结果准确度的提高具有指导意义。  相似文献   

3.
采用微波消解-原子荧光光谱法测定小麦粉中的汞,分析测定过程,确定不确定度来源,建立不确定度评定数学模型,对各不确定度分量的来源进行合成和扩展。结果表明:标准曲线拟合及回收实验引入的不确定度分量是影响测量结果的主要原因。小麦粉中总汞含量的测定结果表示为(0.016 9±0.001 4)mg/kg,k=2,P=95%。  相似文献   

4.
对超级微波消解-电感耦合等离子体质谱法测定豆奶粉中镍的不确定度进行评定与优化。以JJF1059.1—2012《测量不确定度评定与表示》与CNAS—GL006:2019《化学分析中不确定度的评估指南》为依据,建立不确定度评定的数学模型,分析不确定度的主要来源并评定不确定度分量,进而计算合成相对标准不确定度与扩展不确定度,最后分析不同来源对不确定度的影响,提出减小不确定度的可能优化方法。当包含概率为95%(即包含因子k=2)时,镍元素的扩展不确定度为0.222 mg/kg,即豆奶粉中镍含量的测定结果为(3.825±0.222)mg/kg。通过降低不确定度的优化方法,相对标准不确定度从0.0290下降至0.0238。标准工作溶液的配置与标准曲线的拟合是超级微波消解–电感耦合等离子体质谱法测定豆奶粉中镍的不确定度的主要来源,优化方法能够有效降低测定结果的不确定度。  相似文献   

5.
采用微波消解处理样品,利用电感耦合等离子体质谱仪(ICP-MS)对鸡肉粉标准品中的砷总含量进行分析。利用建立的数学模型,分析了存在的不确定度的来源,并对影响实验结果的各个不确定度进行了计算评定分析。用ICP-MS测定砷的评定结果显示:样品中砷含量为0.113mg/kg,其扩展不确定度为0.007mg/kg(k=2),测量结果表示为(0.113±0.007)mg/kg。  相似文献   

6.
目的 评定微波消解-原子荧光法测定大米粉中总砷含量的不确定度。方法 依据JJF 1059.1-2012《测量不确定度评定与表示》及CNAS-GL 006-2019《化学分析中不确定度的评估指南》, 采用微波消解-原子荧光法测定大米粉质控样品中总砷含量, 建立数学模型, 并对整个分析过程中产生的不确定度分量进行评定。结果 当大米粉质控样品中砷测定结果为0.156 mg/kg时, 其扩展不确定度为0.0067 mg/kg(k=2)。结论 量化后测定过程中各影响因素所产生的不确定度表明实验过程的不确定度主要来源于标准曲线拟合, 其次是加标回收率及测量重复性。  相似文献   

7.
目的 建立石墨炉原子吸收光谱法测定泰虾中镉的不确定度评定方法。方法 样品经微波消解后稀释,将一定量的样品消解液注入原子吸收分光光度计的石墨炉原子化器中。采用标准曲线法定量。分析了测定过程中的不确定度来源,对不确定度的组成进行了评定和量化。根据数学模型计算了样品中镉的含量,合成了标准不确定度和扩展不确定度。结果 石墨炉原子吸收光谱法测定泰虾中镉含量为1.6 mg/kg,扩展不确定度为0.2 mg/kg(k = 2),结果表达为 (1.6 ± 0.2) mg/kg,k = 2。结论 结果表明,不确定度的主要来源是样品溶液中镉浓度的测定,其次是重复测定和加标回收试验,其他因素引起的不确定度可以忽略。  相似文献   

8.
通过对电感耦合等离子体发射光谱(ICP-AES)测定鞋材中总铅含量的不确定度的评定实践,建立了该分析过程的相应数学模型,对数学模型中各个参数进行不确定度来源分析,按照国际通用方法对各不确定度分量合成和扩展,得到ICP-AES法测定鞋材中总铅含量的不确定度评定。结果表明标准曲线拟合线性方程、配制标准工作液的不确定度、样品重复性分析及样品称样质量是不确定度的主要来源。  相似文献   

9.
采用索氏抽提法测定油炸方便面脂肪含量,通过建立数学模型确定油炸方便面中脂肪含量,分析测量过程中测量不确定度的来源,对测量测量不确定度来源进行A类评定和B类评定,确定了合成测量不确定度和扩展测量不确定度,最终得出油炸方便面中的脂肪测量不确定度,确定了脂肪测量不确定度的主要来源是自动脂肪测定仪引入的测量不确定度分量。  相似文献   

10.
目的:为提高电感耦合等离子质谱法(ICP-MS)测定茶多酚片中痕量重金属铅和总砷含量的准确性,通过建立数学模型,对不确定度来源进行分析。方法:样品经过微波消解前处理,采用ICP-MS法分别测定茶多酚片中铅和总砷的含量,根据JJF1059.1-2012《测量不确定度评定与表示》分析不确定度来源,计算合成不确定度和扩展不确定度。结果:经过分析计算,茶多酚片中铅和总砷的扩展不确定度分别为0.029、0.010mg/kg。结论:影响茶多酚片中铅和总砷ICP-MS法测定的不确定度主要来源为样品前处理和标准溶液。  相似文献   

11.
液相色谱法测定保健食品中番茄红素的不确定度评定   总被引:8,自引:7,他引:1  
目的评定高效液相色谱法(high performance liquid chromatography,HPLC)测定保健食品中番茄红素含量的不确定度。方法依据《测量不确定度评定与表示》(JJF1059.1-012),分析番茄红素含量测定过程中的不确定度来源,通过建立数学模型量化不确定度分量,计算合成不确定度及扩展不确定度。结果本研究测得的保健食品中番茄红素的含量为(51.3±6.8)g/kg,扩展不确定度为6.8 g/kg(k=2)。测定过程的不确定度来源主要有样品称量、标准溶液的配制及标准曲线拟合、样品前处理、样品重复性测定及仪器本身带来的不确定度。结论 HPLC法测定番茄红素的不确定度主要来源于标准溶液的校正,其次为样品前处理引入的不确定度,其他因素的影响相对较小。  相似文献   

12.
目的 评定超高效液相色谱法(UPLC)测定保健食品中DHEA含量的不确定度。方法 依据《测量不确定度评定与表示》(JJF1059.1–012),分析实验过程DHEA含量测定的不确定度来源; 通过建立数学模型以量化不确定度分量,计算合成不确定度及扩展不确定度。结果 本研究测得保健食品中DHEA的含量为(86.5±4.42) g/kg,扩展不确定度为4.42 g/kg(k=2)。结论 UPLC法测定DHEA的不确定度主要来源于标准溶液的制备和拟合,其次为样品的重复测定和前处理过程引入的不确定度。  相似文献   

13.
目的 对高效液相色谱法测定能力验证样品(饮料)中咖啡因含量的不确定度进行评定。方法 根据JJF1059.1-2012标准要求, 建立不确定度评估的数学模型, 通过对不确定度的各主要分量进行分析计算, 得出合成不确定度以及扩展不确定度, 最终进行测定结果的不确定度评定。结果 当能力验证样品中咖啡因的测定结果为156.9 mg/kg时, 在95%的置信区间下, 其扩展不确定度为5.8 mg/kg (k=2)。结论 采用高效液相色谱法测定饮料中咖啡因含量, 其不确定度的主要来源为标准溶液配制和标准曲线拟合, 该评估模型为检测饮料中咖啡因的不确定度评估提供了参考依据。  相似文献   

14.
目的评定超高效液相色谱串联质谱法(ultra performance liquid chromatography-tandem mass spectrometry,UPLC-MS/MS)测定葡萄中的多菌灵和嘧菌酯的不确定度。方法样品经Qu ECh ERS方法净化后浓缩,经ACQUITY BEH C18色谱柱分离,流动相梯度洗脱,多反应监测模式检测。根据JJF 1059.1-2012《测量不确定度评定与表示》对不确定来源进行分析,建立数学模型,计算各不确定度分量,合成扩展不确定度。结果当葡萄中多菌灵、嘧菌酯含量分别为0.356、0.046 mg/kg时,在95%的置信区间下,其扩展不确定度分别为±0.033、±0.005 mg/kg(k=2)。结论本方法主要不确定来源为标准工作溶液配制和样品重复测定(多菌灵);标准工作溶液配制和标准曲线拟合(嘧菌酯),其他因素影响较小。  相似文献   

15.
目的对气相色谱-三重四极杆质谱法测定蔬菜中氟虫腈残留量的方法进行不确定度评估。方法根据JJF 1059.1-2012《测量不确定度评定与表示》和JJF 1135-2005《化学分析测量不确定度评定》中有关规定,建立了用内标法测定蔬菜中氟虫腈残留量不确定度评估的数学模型,对测定中的不确定度来源进行分析和评估。结果对不确定的分量进行量化和合成,结果表明,当蔬菜中氟虫腈残留量为0.02 mg/kg时,扩展不确定度为0.0096 mg/kg,氟虫腈残留量表示为(0.02±0.0096)mg/kg(k=2)。结论实验过程中的不确定度主要来源于标准溶液的配制和样品的稀释等过程,本评估方法可为气相色谱-三重四极杆质谱法的不确定评估提供依据。  相似文献   

16.
邵华  黄玉婷  金茂俊  金芬  王静  李颖 《食品科技》2012,(8):293-296,300
对分散固相萃取法-液相色谱法测定水果中氟吗啉残留量过程进行分析,建立数学模型。评定各不确定度分量,合成标准不确定度,计算测定结果的扩展不确定度。结果表明:主要来源于标准系列溶液配制,样品的均匀性和样品前处理过程的一致性,以及标准曲线的拟合。当置信概率为95%,采用该方法测定试样中氟吗啉残留的扩展不确定度为0.18,则试样中茚虫威残留的检测结果可表示为(1.46±0.18)mg/kg(k=2)。  相似文献   

17.
为满足对浓香型白酒中己酸含量准确测定的需求,建立了高效液相色谱法(HPLC)测定白酒中己酸含量不确定度的分析方法。通过建立数学模型,对测定过程中引入的不确定度分量进行评估,确定浓香型白酒中己酸质量浓度标准不确定度是由被测量值重复测试、样品制备(取样量及定容体积)、标准物质(纯度98.55%,不确定度0.44%)、标准溶液配制、标准曲线拟合、仪器稳定性等不确定度合成得到。结果表明,标准溶液配制是影响结果不确定度的主要因素,其次是标准曲线拟合,其相对标准不确定度分别为0.020 8和0.018 4。本实验中浓香型白酒中己酸含量的测定结果可表示为(2.72±0.18)g/L,k=2。  相似文献   

18.
浸渍法测定塑料包装材料密度的测量不确定度评定   总被引:1,自引:0,他引:1  
建立浸渍法测定塑料包装材料密度的测量不确定度评定方法,以控制产品质量。通过建立数学模型、绘制因果图,分析称量、温度、大气压等影响测量密度不确定度的各种因素并计算各不确定度分量,对测量塑料包装材料密度的不确定度进行评估。计算出总合成不确定度、给出测定结果的扩展不确定度和包含因子。表观质量的称量和温度是影响密度测量的主要因素,空气密度的影响可以忽略不计。建立的评定方法可用于浸渍法测定塑料包装材料如药用聚酯瓶密度的不确定度评价。  相似文献   

19.
The uncertainty of aflatoxin M(1) concentration in milk, determined by thin-layer chromatography (TLC) with visual and densitometric quantification of the fluorescence intensities of the spots, was estimated using the cause-and-effect approach proposed by ISO GUM (Guide to the expression of uncertainty in measurement) following its main four steps. The sources of uncertainties due to volume measurements, visual and densitometric TLC calibration curve, allowed range for recovery variation and intermediary precision to be taken into account in the uncertainty budget. For volume measurements the sources of uncertainties due to calibration, resolution, laboratory temperature variation and repeatability were considered. For the quantification by visual readings of the intensity of the aflatoxin M(1) in the TLC the uncertainty arising from resolution calibration curves was modelled based on the intervals of concentrations between pairs of the calibration standard solutions. The uncertainty of the densitometric TLC quantification arising from the calibration curve was obtained by weighted least square (WLS) regression. Finally, the repeatability uncertainty of the densitometric peak areas or of the visual readings for the test sample solutions was considered. For the test samples with aflatoxin M(1) concentration between 0.02 and 0.5 μg l(-1), the relative expanded uncertainties, with approximately 95% of coverage probability, obtained for visual TLC readings were between 60% and 130% of the values predicted by the Horwitz model. For the densitometric TLC determination they were about 20% lower. The main sources of uncertainties in both visual and densitometric TLC quantification were the intermediary precision, calibration curve and recovery. The main source of uncertainty in the calibration curve in the visual TLC analysis was due to the resolution of the visual readings, whereas in the densitometric analysis it was due to the peak areas of test sample solutions followed by the intercept and slope uncertainties of the calibration line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号