首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
《Ceramics International》2022,48(15):21451-21458
During the deposition of a-C:H film, defects (pinholes or discontinuities) caused by excessive stress will inevitably appear, which will reduce the corrosion resistance of the a-C:H film. In this study, top a-C:H:Si:O layers (thickness of approximately 0.3 μm) on the surface of a-C:H films were deposited on a large scale by PACVD technology using acetylene (C2H2) and/or hexamethyldisiloxane (HMDSO) as reactants, to improve the corrosion resistance of a-C:H films while ensuring the appropriate overall hardness of the films. The corrosion behaviors of the films were studied by electrochemical impedance spectroscopy (EIS) and Tafel polarization. We found that the a-C:H/a-C:H:Si:O films possess a lower electrolyte penetration rate due to their stronger capacitance characteristics. In addition, the corrosion current density of the a-C:H/a-C:H:Si:O films (10?10 A cm?2) were reduced by 2 orders of magnitude compared to the a-C:H film (10?8 A cm?2), and by 3 orders of magnitude compared to 316 stainless steel (10?7 A cm?2). The impedance results obtained by EIS were simulated using appropriate equivalent circuits, and the corresponding electrical parameters were used to further verify the electrochemical protection behavior of the top a-C:H:Si:O layer.  相似文献   

2.
Wei-Jen Hsieh 《Carbon》2005,43(4):820-826
The optical and electrical properties of so-called carbon nitride films (a-C:N) and boron doped so-called carbon nitride films (a-C:N:B) are studied with cathodoluminescence (CL) spectroscopy and electron field emission measurement. The a-C:N films were first deposited on Si by a filtered cathodic arc plasma system, and then boron ions (∼1 × 1016 cm−2) were implanted into the a-C:N films to form a-C:N:B films by a medium current implanter. The structural and morphological properties of a-C:N and a-C:N:B films were then analyzed using secondary ion mass spectrometer, X-ray photoelectron spectroscopy, FT-IR spectra, Raman spectroscopy and atomic force microscopy. The a-C:N film exhibits luminescence of blue light (∼2.67 eV) and red light (∼1.91 eV), and the a-C:N:B film displays luminescence of blue light (∼2.67 eV) in CL spectra measured at 300 K. Furthermore, the incorporated boron atoms change the electron field emission property, which shows a higher turn on field for the a-C:N:B film (3.6 V/μm) than that for the a-C:N film (2.8 V/μm).  相似文献   

3.
Amorphous hydrogenated carbon (a-C:H) films with high water-repellency were prepared on Si substrates by a simple heat-treatment of the poly(phenylcarbyne) polymer at various temperature in Ar atmosphere. The contact-angle (CA) was measured by the sessile-drop technique. The use of CA for different liquid (water, ethylene glycol, and formamide) analysis for the evaluation of surface energy including the dispersion and polar components was described. The influences of surface roughness, chemical composition, and microstructure of carbon films on water CA and surface energy were investigated by atomic force microscopy (AFM), Fourier transforms infrared spectrometry (FTIR), and Raman spectroscopy, respectively. As the results, the a-C:H films exhibit good hydrophobicity and low surface free energy. The CA of a-C:H films slight increases and the surface free energy of a-C:H films reduces with the increase of the heat-treatment temperature. The a-C:H films are hydrophobic for not only pure water but also corrosive liquids, such as acidic and alkali solutions. The roughness of the films has no obvious effect on the CA and the reduction of surface energy with the increase of heat-treatment temperature is related to increase of sp2 content in the film.  相似文献   

4.
X.B. Yan  T. Xu  G. Chen  H.W. Liu  S.R. Yang 《Carbon》2004,42(15):3103-3108
Hydrogenated amorphous carbon (a-C:H) films were deposited on Si substrates by electrolysis in a methanol solution at ambient pressure and a low temperature (50 °C), using various deposition voltages. The influence of deposition voltage on the microstructure of the resulting films was analyzed by visible Raman spectroscopy at 514.5 nm and X-ray photoelectron spectroscopy (XPS). The contents of sp3 bonded carbon in the various films were obtained by the curve fitting technique to the C1s peak in the XPS spectra. The hardness and Young’s modulus of the a-C:H films were determined using a nanoindenter. The Raman characteristics suggest an increase of the ratio of sp3/sp2 bonded carbon with increasing deposition voltage. The percentage of sp3-bonded carbon is determined as 33–55% obtained from XPS. Corresponding to the increase of sp3/sp2, the hardness and Young’s modulus of the films both increase as the deposition voltage increases from 800 V to 1600 V.  相似文献   

5.
Amorphous hydrogenated carbon nitride [a-C:H(N)] films were deposited from the mixture of C2H2 and N2 using the radio frequency plasma enhanced chemical vapor deposition technique. The films were characterized by X-ray photon spectroscopy, infrared, and positron annihilation spectroscopy. The internal stress was measured by substrate bending method. Up to 9.09 at% N was incorporated in the films as the N2 content in the feed gas was increased from 0 to 75%. N atoms are chemically bonded to C as C–N, CN and CN bond. Positron annihilation spectra shows that density of voids increases with the incorporation of nitrogen in the films. With rising nitrogen content the internal stress in the a-C:H(N) films decrease monotonically, and the rate of decrease in internal stress increase rapidly. The reduction of the average coordination number and the relax of films structure due to the decrease of H content and sp3/sp2 ratio in the films, the incorporation of nitrogen atoms, and the increases of void density in a-C:H(N) films are the main factors that induce the reduction of internal stress.  相似文献   

6.
In this work diamond-like carbon films were deposited on the Ti–6Al–4V alloy, which has been used in aeronautics and biomedical fields, by electrical discharges using a magnetron cathode and a 99.999% graphite target in two different atmospheres, the first one constituted by argon and hydrogen and the second one by argon and methane. Films deposited using the argon/hydrogen mixture were called a-C:H, while films deposited using the argon/methane mixture were called DLC. Raman spectroscopy was used to study the structure of the films. The Raman spectra profile of the a-C:H films is quite different from that of the DLC films. The disorder degree of the graphite crystalline phase in a-C:H films is higher than in DLC films (a-C:H films present small values for the the ID/IG ratio). Potentiodynamic corrosion tests in 0.5 mol l−1 NaCl aqueous solution, pH 5.8, at room temperature (≈25 °C) were carried out as for the a-C:H as for the DLC coated surfaces. Comparison between the corrosion parameters of a-C:H and DLC coated surfaces under similar deposition time, showed that DLC coated surfaces present bigger corrosion potential (Ecorr) and polarization resistance than those coated with a-C:H films. Electrochemical impedance spectroscopy (EIS) was also used to study the electrochemical behavior of a-C:H and DLC coated surfaces exposed to 0.5 mol l−1 aqueous solution. The EIS results were simulated with equivalent electrical circuit models for porous films. The results of these simulations showed similar tendency to the one observed in the potentiodynamic corrosion tests. The DLC film resistance and the charge transfer resistance (Rct) for the DLC coated surface/electrolyte interface were bigger than the ones determined for the a-C:H coated surfaces.  相似文献   

7.
Hydrogenated amorphous carbon (a-C:H) films deposited from CH4 in a dual electron cyclotron resonance (ECR)–r.f. plasma were treated in N2 plasma at different r.f. substrate bias voltages after deposition. The etching process of a-C:H films in N2 plasma was observed by in situ kinetic ellipsometry, mass spectroscopy (MS), and optical emission spectroscopy (OES). Ex situ atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the etched film surface. XPS analysis proves that the nitrogen treatment on the a-C:H film, induced by r.f. substrate bias, causes a direct nitrogen incorporation in the film surface up to 15–17 at.% to a depth of about 20–40 Å depending on the r.f. bias. Various bonding states between carbon and nitrogen, such as tetrahedral sp3 C–N, and trigonal sp2 C–N were confirmed by the deconvolution analysis of C 1s and N 1s core level spectra. The evolution of etching rate and the surface roughness in the film measured by AFM exhibit a clear dependence on the applied r.f. bias. MS and OES show the various neutral species in the N2 plasma such as HCN, CN, and C2N2, which may be considered as the chemical etching products during the N2 plasma treatment of a-C:H film.  相似文献   

8.
As a protective coating for hard disks in magnetic storage applications, amorphous carbon nitride (a-C:N) thin films have proved superior to DLC (diamond-like carbon) a-C:H films in terms of durability, wear-resistance and adhesion properties. In this study, we present Raman spectroscopy investigations of a-C:N films which were produced by DC-magnetron sputtering systems. The layers were deposited with a variable nitrogen content, thickness and substrate temperature. Raman measurements were carried out with two different excitation lasers at wavelengths of 488 and 532 nm. The spectra show that besides the typical carbon D- and G-bands, two other characteristic bands are present at approximately 690 and 1090 cm−1. The meaning and identification of these bands is not clear in the literature. In order to obtain more information, the films were also characterized by various analytical techniques, e.g. time-of-flight secondary ion mass spectrometry (ToF-SIMS), Auger electron spectroscopy (AES), ellipsometry, and n+k optical measurements. The Raman G-band position shows a systematic shift with the varying nitrogen content of the films. A comparison of layer thickness and the total area of D-, G- and 1090 cm−1 bands also shows a significant correlation. The results offer Raman spectroscopy as a possible monitoring tool for carbon nitride coatings in the production of magnetic hard disk drives.  相似文献   

9.
In this report, tetrahedral amorphous carbon (ta-C), hydrogenated amorphous carbon (a-C:H), silicon doped tetrahedral amorphous carbon (ta-C:Si:H), and silicon doped hydrogenated amorphous carbon (a-C:H:Si) films with thickness in the range 50-370 nm have been produced by PECVD (Plasma Enhanced Chemical Vapour Deposition) and FCVA ( Filtered Cathodic Vacuum Arc) techniques on Polyethylene terepthalate (PET) and polycarbonate (PC) substrates. The paper is concerned with exploring the links between the atomic structure, gas barrier performance in carbon based films deposited on polymer substrates. A range of techniques including XRR, NEXAFS, Raman, surface profilometry, nano-indentation and water vapour permeation analysis were used to analyze the microstructure and properties of the films. The intensity and area of π* peak at the C K (carbon) edge of the NEXAFS spectra was lower in the FCVA films in comparison to that of PECVD ones confirming the higher sp3 content of FCVA films. The surface of ta-C films showed a network of micro-cracks, which is detrimental for gas barrier application. However, the surfaces of both ta-C:H:Si and a-C:H:Si silicon-incorporated films were almost free of cracks. We also found that the incorporation of Si into both types of DLC films lead to a significant reduction of water vapour transmission rate.  相似文献   

10.
The influence of the ambient argon gas (Ar) pressure on the properties of the hydrogenated amorphous carbon (a-C:H) films deposited by pulsed laser deposition (PLD) using camphoric carbon (CC) target have been studied. The a-C:H films are deposited with varying Ar pressure range from 0.01 to 0.23 Torr. SEM and AFM show that the particle size of films is decreases, while the roughness increases with higher Ar pressure. The FTIR measurement revealed the presence of hydrogen in the a-C:H films. We found the surface morphology, structural and physical properties structure of a-C:H films are influenced by the presence of inert gas and the ratio of sp2 trigonal component to sp3 tetrahedral component is strongly dependent on the inert gas pressure. We suggest that these phenomena are due to the effect of the optimum concentration of the Ar atoms in the C lattice. Improvement of the structural properties of the a-C:H films deposited in inert gas environment using CC target reveals different behaviour than reported earlier.  相似文献   

11.
Carbon-based thin films are ideal materials for several state-of-the-art applications, such as protective materials and as active films for organic electronics, medical, optoelectronic devices. In this work, we study in detail the effect of the ion-bombardment and the hydrogen partial pressure during deposition on the optical properties of hydrogenated amorphous carbon (a-C:H) thin films grown onto c-Si substrates by rf magnetron sputtering. The optical properties of the a-C:H films were investigated by phase modulated Spectroscopic Ellipsometry in a wide spectral region from the NIR to the Vis-far UV (0.7-6.5 eV). A dispersion model based on two Tauc-Lorentz oscillators, has been applied for the analysis of the measured < ε(ω)> of the a-C:H films to describe the π-π* and σ-σ* interband electronic transitions, that can describe accurately the optical properties of all amorphous carbons. The applied Vb influences the bombardment of the growing thin films with Ar ions affecting the content of sp2 and sp3 hybridized carbon bonds in the films. As it was found, the increase of the applied negative voltage reduces the optical transparency of the a-C:H films. Also, the H incorporation has been found to change only the energy position of the σ-σ* transitions. Finally, from the study of the refractive index n(ω = 0 eV) it has been found that the increase of the ion bombardment during the films deposition is correlated to an increase in the films density.  相似文献   

12.
Thermally-assisted (160 °C) liquid phase grafting of linear alkene molecules has been performed simultaneously on amorphous carbon (a-C) and hydrogen passivated crystalline silicon Si(111):H surfaces. Atomically flat a-C films with a high sp3 average surface hybridization, sp3 / (sp2 + sp3) = 0.62, were grown using pulsed laser deposition (PLD). Quantitative analysis of X-ray photoelectron spectroscopy, X-ray reflectometry and spectroscopic ellipsometry data show the immobilization of a densely packed (> 3 × 1014 cm? 2) single layer of organic molecules. In contrast with crystalline Si(111):H and other forms of carbon films, no surface preparation is required for the thermal grafting of alkene molecules on PLD amorphous carbon. The molecular grafted a-C surface is stable against ambient oxidation, in contrast with the grafted crystalline silicon surface.  相似文献   

13.
We report results from a range of complementary studies of pulsed ArF (193 nm) laser ablation of poly(methyl-methacrylate), PMMA, in vacuo, and in the presence of low background pressures of Ar and He, designed to identify correlations between the properties of the plume and those of the a-C:H films that result when the plume is incident on a NaCl substrate. The plume itself has been investigated by wavelength, spatially and/or temporally resolved measurements of the emission from electronically excited H1, C1, O1, CH1 and C21 fragments, and by Langmuir probe (time-of-flight) measurements of the positively and negatively charged ablated particles, as a function of laser fluence and of ambient gas pressure. Infrared absorption spectroscopy suggests that a-C:H films deposited following pulsed laser ablation of PMMA under low pressures of Ar contain similar C:H:O ratios to the parent polymer, but also confirms previous reports that films deposited in vacuo have a reduced H content.  相似文献   

14.
Amorphous carbon films have several outstanding tribology characteristics, including high hardness, surface smoothness, and low friction. Under tribological conditions, their surface is generally exposed to high-temperature and pressure. Although the structure of amorphous carbon films is likely changed by high temperature and pressure, there have been no reports on such structural changes of the films. To obtain information about their structural changes, synchrotron X-ray diffraction was used to analyze two kinds of amorphous carbon films, a-C:H and a-C:H:Si, under high-temperature and high-hydrostatic pressure conditions. Synchrotron X-ray diffraction was applied to films pressurized by a multi-anvil press installed in the PF-AR NE5C beamline at KEK at room temperature and at a high-temperature around 200 °C. The pair distribution functions derived by Fourier transformation of the obtained scattering intensity profiles showed that the sp2/sp3 ratios for both films decreased as the pressure increased and that the sp2/sp3 ratio for the a-C:H film increased as the temperature increased. This indicates that high-pressure creates sp3 stabilization in a-C:H and a-C:H:Si films while high-temperature creates sp2 transition in a-C:H film. The sp2/sp3 ratio for the a-C:H:Si film did not change much even at high-temperature due to the high thermal-oxidative stability of a-C:H:Si.  相似文献   

15.
We review the implementation of X-ray reflection (reflectivity and scattering) techniques for the study of amorphous Carbon (a-C, a-C:H, ta-C) thin and multilayer films and in particular in the determination of the film density and surface and interface morphology, which are intrinsically significant for ultra-thin films. We present studies of various a-C and a-C:H films, which include in particular: i) the morphology of a-C/Si interface, ii) the surface morphology and density evolution during sputter growth of a-C, iii) the morphology of the sp2-rich a-C/sp3-rich a-C interfaces in multilayer a-C films, iv) the universal correlation between the film density and the refractive index of a-C and a-C:H films. We also compare and validate the experimental results with relative results from Monte-Carlo simulations within an empirical potential scheme. The computational results shed light on the atomistic mechanisms determining the structure and morphology of the a-C interfaces between individual sp2- and sp3-rich a-C layers and between a-C and Si substrates.  相似文献   

16.
TiC/amorphous hydrogenated carbon (a-C:H) composite films were deposited by Ti DC magnetron sputtering using argon and acetylene as the carrier gas and precursor, respectively. The working pressure was maintained at 4 × 10 1 Pa and the composition of the films was modulated by controlling the partial pressure of acetylene. The composition and structure of the films were evaluated by X-ray photoelectron spectroscopy and glancing angle X-rays diffraction, whereas the hardness and elastic modulus values of the films fabricated using different sample biases were measured by nano-indentation. Ball-on-disk tribometry was used to measure the tribological properties, and secondary electron microscopy was used to analyze the wear tracks. The results show that the friction coefficients and wear rates do not vary significantly with the Ti concentrations when the Ti concentration is above 39.7 at.% or below 20 at.% but increase with increasing titanium concentrations between 20 at.% and 39.7 at.%. The wear mechanism depends on the relative amounts of TiC and a-C:H. At high Ti concentrations, the mechanism resembles that of TiC due to the thin a-C:H matrix surrounding the TiC grains. At low Ti concentrations, the mechanism is similar to that of DLC as the effects of the a-C:H matrix dominates over those of the TiC grains.  相似文献   

17.
The semiconductor capacitances of the nitrogen-doped amorphous carbon (a-C:N) materials with different sp3/sp2 C ratios were studied as a function of electrode potential in a-C:N/aqueous electrolyte systems. This dependence of capacitance on electrode potential in aqueous 0.1 M NaOH shows that the investigated a-C:N materials are intrinsic semiconductors. The space-charge layers inside the a-C:N electrodes behave similar to a Helmholtz layer because of the presence of surface states when the electrolytes contain O2 or anions other than OH. The lower density and mobility of carriers of materials with a higher sp3 C fraction within the a-C:N material causes a suppression of redox reactions, and the lower density of carriers contributes to a lower capacitance.  相似文献   

18.
Amorphous carbon films form a critical protective layer on magnetic hard disk media. A novel in-house configured hybrid facing targets sputtering (HyFTS) utilizing a special magnetron arrangement was used to deposit amorphous carbon (a-C) overcoats. The corrosion inhibition ability and mechanical property were investigated and compared with that of the a-C overcoats deposited by conventional magnetron sputtering (CMS). Studies were done using electrochemical techniques and nano-scratch analysis to determine how corrosion inhibition ability changes at thickness of 2 nm and 5 nm and the scratch resistance of the two types of a-C overcoats, respectively. Electrochemical impedance spectroscopy and potentiodynamic polarization investigations have shown that a-C films deposited by HyFTS have good corrosion resistance even at 2 nm thickness. But at 2 nm, CMS deposited a-C overcoat shows sign of corrosion. Nano-scratch test has also shown improved scratch resistance of the HyFTS deposited a-C. This may be attributed to the better quality film with higher sp3 content deposited by HyFTS as a result of it having a higher amount of ionized species generated.  相似文献   

19.
Tetrahedral diamond-like carbon (ta-C) films and hydrogenated a-C:H films were deposited onto Si substrates using filtered cathodic vacuum arc (FCVA) process and direct ion beam deposition from CH4/C2H4 plasma, respectively. Stress of deposited films was varied in the range 2.8–8.5 GPa depending on deposition conditions. Stationary and pulse electron spin resonance (ESR), and Raman spectroscopy techniques were used to analyze sp2 related defects in pseudo-gap of undoped as deposited and annealed 20–100 nm thick films.1 High density of ESR active paramagnetic centers (PC) Ns=(1.0–4.5)×1021 cm−3 at g=2.0025 was observed in the films. The dependence of ESR line width and line shape vs. deposition conditions and internal film stress were investigated. The several actual mechanisms for ESR line width broadening were considered: spin–spin dipole–dipole and exchange interactions, super-hyperfine interaction (SHFI) with 1H (for a-C:H), averaging of SHFI due to electron jumps between PC positions with different SHFI values, and broadening due to Mott's electron hopping process. Three types of samples were revealed depending on relative contribution of these mechanisms. Effects of annealing on mechanical and paramagnetic properties of films were studied. An electrical resistance anisotropy at room temperature for ta-C films and g-value anisotropy at low temperature (T<77 K) for both ta-C and a-C:H films were found for the first time. Nature and distribution details of paramagnetic defects in DLC films, anisotropy effects and Raman spectroscopy data are discussed.  相似文献   

20.
Nitrogen-doped ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) composite films, which possess n-type conduction with enhanced electrical conductivities, were prepared by pulsed laser deposition and they were structurally studied by Fourier transform infrared (FTIR) spectroscopy. The film with a nitrogen content of 7.9 at.% possessed n-type condition with an electrical conductivity of 18 S/cm at 300 K. The FTIR spectra revealed peaks due to nitrogen impurities, C = N, C-N, and CHn (n = 1, 2, 3) bands. The sp2-CHn/(sp2-CHn + sp3-CHn), estimated from the area-integration of decomposed peaks, were 24.5 and 19.4% for undoped and 7.9 at.% doped films, respectively. The nitrogen-doping not only form the chemical bonds between carbon and nitrogen atoms such as C = N and C-N bonds but also facilitate the formation of both sp2 and sp3 bonds, in particular, the sp3-CHn bond is preferentially formed. From the analysis of the FTIR spectra, it was found that the hydrogen content in the film is increased with an increase in the nitrogen content. The increased hydrogen content might be owing to the enhanced volume of grain boundaries (GBs) between UNCD grains, and those between UNCD grains and an a-C:H matrix, which is caused by a reduction in the UNCD grain size. The CHn peaks predominantly come from an a-C:H matrix and GBs. Since the nitrogen-doping for a-C:H has been known to be hardly effective, the n-type conduction with the enhanced electrical conductivities might be attributed to the sp2-CHn formation at the GBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号