首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This paper presents a low phase noise integer-N phase-locked loop (PLL) for V-band signal generation. To enhance the frequency stability, we use a new class of Vackar voltage-controlled oscillator (VCO) in the PLL. The Vackar VCO achieves a low phase noise performance by effectively suppressing the AM-PM conversion. To properly align the locking range with the output of the VCO, a divider with wide locking range is realized by the current-mode logic (CML) D-flip-flops with tunable load. For spur reduction, an enhanced charge-pump structure is used to reject transient current glitches. With good static and dynamic current matching achieved in the charge pump, the reference spur is suppressed down to ?50 dBc. The designed PLL is implemented in a 65 nm RFCMOS process, and the measurement demonstrates a low phase noise signal up to 17 GHz. The in-band phase noise (at 1 MHz offset) and out-band phase noise (at 50 MHz offset) are ?103.6 and ?126.8 dBc/Hz, respectively. The PLL consumes 50.7 mW and occupies a chip area of 0.9 mm2.  相似文献   

2.
This paper presents a low power ring oscillator-based spread-spectrum clock generator with three-step frequency and voltage-controlled oscillator (VCO) gain calibration for S-ATA applications. To meet the low jitter requirements with a small VCO gain, a ring-type VCO with three step frequency calibration and gain calibration scheme is proposed. The proposed coarse tuning method selects the optimal tuning currents and capacitances of the ring VCO to optimize the phase noise. The gain of ring-type VCO can be reduced and kept constant with the proposed three-step frequency and VCO gain calibration. As a result, it can improve the phase noise characteristics of the ring-type VCO and make it more robust to the PVT variations. Also, charge pump up/down current mismatches are compensated with the current mismatch compensation block. This chip is fabricated with 65 nm CMOS technology, and the die area is 430 × 460 μm2. The power consumption is 12 mW at 1.2 V supply voltage. The measured RMS jitter and phase noise are 2.835 ps and ?96.83 dBc/Hz at 1 MHz offset, respectively.  相似文献   

3.
In this paper, we present the design and development of a low-power LC-VCO with improved phase noise performance by implementing a new capacitor divider varactor configuration and a 2nd order notch filter. We propose a new time-weighted approach to model the effective capacitance experienced by the oscillating signal over the oscillation period. The modeled effective capacitance is used in the calculation of the oscillation frequency, which agrees well with the simulation results. Two VCOs are designed and fabricated in TSMC 0.18 μm technology. The oscillation frequency is tunable from 759 to 910 MHz with a tuning range of 18%. At 900 MHz carrier, the measured phase noise is ?126.1 dBc/Hz at 1 MHz frequency offset with 4.5 mW power consumption.  相似文献   

4.
This paper presents a front-end architecture for fully integrated 60 GHz phased array receivers. It employs LO-path beamforming using a phase controlled phase-locked loop (PC-PLL). To demonstrate the architecture a circuit is implemented featuring a two stage low noise amplifier, two cascaded active mixers, and a PC-PLL. The receiver downconverts the 60 GHz signal in two steps, using LO signals from the 20 GHz QVCO of the PLL. A differential 2nd-order harmonic is coupled from the sources of the current commutating pairs of the QVCO, feeding the LO-port of the first mixer and downconverting the 60 GHz RF signal to a 20 GHz intermediate frequency. Quadrature 20 GHz LO signals are then used in the second mixer to down-convert the IF signal to baseband. The PLL is locked to a relatively high reference frequency, 1.25 GHz, which reduces the size of the PLL loop filter and enables a compact layout. The measurements show an input return loss better than ?10 dB between 57.5 and 60.8 GHz, a 15 dB voltage gain, and a 9 dB noise figure. Two-tone measurements show ?12.5 dBm IIP3, 29 dBm IIP2, and ?24 dBm ICP1. The PC-PLL phase noise is ?105 dBc/Hz at 1 MHz offset from a 20 GHz carrier, and the phase of the received 60 GHz signal is digitally controllable with a resolution of 3.2°, covering the full 360° range with a phase error smaller than 1°. The chip consumes 80 mA from a 1.2 V supply, and measures 1,400 μm × 660 μm (900 μm × 500 μm excluding pads) including LNAs, mixers, and PC-PLL in a 90 nm RF CMOS process.  相似文献   

5.
This paper presents a new low voltage low cost quadrature oscillator, which consists of two LC negative oscillators based on active inductor. In this quadrature oscillator, the back-gates of the core transistors are used as coupling terminals to provide the quadrature outputs. The proposed floating active inductor has a two layer transistor structure. The quadrature oscillator has been implemented with the chart 0.18  \(\upmu \) m CMOS technology. At the supply voltage of 1.2 V, the total power consumption is 16 mW. The phase noise at 1 MHz frequency offset is \(-\) 111.8 dBc/Hz at the oscillation frequency of 3.946 Hz.  相似文献   

6.
A novel fractional-N frequency synthesizer which is based on delta sigma modulator (DSM) and specialized for single-chip UHF 860-to-960 MHz band radio frequency identification (RFID) reader is proposed in this paper. The fractional-N synthesizer is implemented in 0.18 μm CMOS process. The phase noise of the fractional-N synthesizer is approximately ?109 and ?129 dBc/Hz at 200 kHz and 1 MHz offset from 900 MHz operating frequency while drawing 9.6 mA from 1.8 V power supply. The synthesizer is evaluated by implementing it in a direct conversion RF front-end. The front-end features a noise figure of 3.5 dB and an input-referred third-order intercept point of 5 dBm.  相似文献   

7.
A highly linear and fully-integrated frequency-modulated continuous-wave (FMCW) generator based on a fractional-N phase-locked loop (PLL) that is able to synthesize modulation schemes in 57–64 GHz range is proposed in this paper. The fractional-N PLL employs Colpitts voltage-controlled oscillator (VCO) at 60 GHz with 13.5% tuning range. Automatic amplitude and frequency calibrations are implemented to avoid drifts due to process, voltage and temperature variations and to set the center frequency of the VCO. Five-stage multi-modulus divider is used for division ratio switching, controlled by the sigma-delta (\(\Sigma \Delta\)) modulator MASH 1-1-1. The frequency sweep (chirp) bandwidth and duration are fully programmable via serial peripheral interface allowing up to 16 different chirps in complex modulation scheme. The PLL reference signal is 250 MHz provided by external low-noise signal generator which is also used for digital modules clock. The overall PLL phase noise is lower than ?80 dBc/Hz at 10 kHz offset and the chirp linearity is better than 0.01%. The complete FMCW synthesizer is implemented and verified as a stand-alone chip in a commercially available SiGe HBT 130 nm BiCMOS technology. The total chip area is \(2.04\,\text {mm}^2\), and the total power consumption is 280 mW.  相似文献   

8.
The work proposed parametric analysis of a novel architecture of phase locked loop (PLL) for pure signal synthesis. It has been widely used in wireless communication systems due to the high frequency resolution and the short locking time. First, we presented a mathematical and accurate model of noise in PLL with take into account noise of its component. Then we predicted output phase noise in term of its parameters. Finally, we described as effective technique for noise in fractional PLL by CppSim simulator. The output phase noise has been reduced from \(-154\) to \(-159\,\) dBc/MHz at 20 MHz offset. The proposed behavioral simulation results show improvement around 5 dBc/MHz. In future, this technique can also be implemented in hybrid PLL.  相似文献   

9.
This paper presents a circuit design and experimental results for a 20 Gbps CMOS inductorless optical receiver, a transimpedance amplifier (TIA) and a limiting amplifier, for a vertical-cavity surface emitting laser based 850 nm optical link. The proposed optical receiver apply a power supply noise canceling technique, an additional path from the power supply to the TIA output to generate a reversed phase signal that reduces the power supply noise, and bandwidth enhancement circuit design that dose not require internal inductors. The simulation results shows a power supply rejection ratio of ?96.6 dB at 10 MHz, a total gain of $82.8\,\hbox{dB}\Upomega$ and a ?3 dB bandwidth of 15.5 GHz. A test chip fabricated in 90 nm CMOS technology and demonstrated with a PIN photo-diode, a bandwidth of 17 GHz and a responsibility of 0.53 A/W. The measurement results show a 25 % eye opening and an input sensitivity of ?7.1 dBm at a bit error rate of 10?12 with a 29 ? 1 pseudo-random test pattern at 20 Gbps. The core circuit of the optical receiver occupies only an area of 0.02 mm2.  相似文献   

10.
This letter presents a fully integrated BiCMOS quadrature voltage-controlled oscillator (QVCO). The QVCO consists of two nMOSFET cross-coupled oscillator stacked in series with source degenerated HBT transistors. SiGe HBT introduces low flicker noise compared to CMOS devices. To generate quadrature phase signals with strong coupling strength, the proposed design uses two MOS-coupled LC-tank cores instead of passive device-coupled cores. This source degeneration topology can improve the phase noise performance of the QVCO as compared to the sub-VCO. The proposed QVCO has been implemented with the TSMC 0.18 μm SiGe 3P6M BiCMOS process, can generate quadrature signals in the frequency range of 4.52–5.05 GHz with core power consumption of 5.76 mW at the dc bias of 1.8 V. At 4.53 GHz, phase noise at 1 MHz offset is ?124.52 dBc/Hz. The die area of the fabricated prototype is 0.453 × 0.898 mm2.  相似文献   

11.
This paper describes a novel technique to derive a pure-spectral system clock with a common multi-modulus divider from a frequency modulated signal. Therefore, the dividing factor is inverse frequency modulated to compensate the frequency modulation component on the divider input signal. Additionally, $\Upsigma\Updelta$ dithering is applied to the frequency divider. The technique is used for a FM-radio transmitter based on an all-digital phase-locked loop (PLL) to generate a higher-frequency clock for baseband signal processing. It can also be applied to other PLL based transmitters or receivers, especially, if only a slow PLL reference clock is available and a faster system or baseband clock is required. The main factor determining the quality of the generated clock signal is the PLL??s reference quartz oscillator as it determines the accuracy of the PLL??s RF oscillator, which limits then the accuracy of the newly generated clock. In the FM-radio transmitter, a generated ??1?MHz clock signal with 30.58?ppm frequency offset and 515?ps root mean square jitter is generated. The phase noise is determined to ?83.5?dBc/Hz at 10?kHz offset and ?70.5?dBc/Hz at 1?kHz, respectively. The signal can also be used in co-integrated or external circuits.  相似文献   

12.
Frequency synthesis has many applications in today's commercial electronic and telecommunication system design. Some techniques exist which can be used to generate a frequency that is an integer or fractional multiple of a reference frequency. This architecture is used to generate a signal of any desired frequency in a certain range from multiple reference signals with same frequency but different phases. These reference signals may come from a voltage-controlled oscillator (VCO) which is close looped with a reference clock by a phase-lock loop (PLL). This architecture provides some unique features, superior quality, and ease of implementation. In some cases, the synthesized frequency is time-average frequency. The signal can be treated as a carrier signal frequency modulated by another signal. Various phase-shifted versions and duty cycle versions of this signal can also be generated from this architecture. This architecture also has direct application to spread spectrum clock generation  相似文献   

13.
In this paper we describe a full-integrated circuit containing all building blocks of a completed PLL-based synthesizer except for low pass filter(LPF). The frequency synthesizer is designed for a frequency hopping (FH) transceiver operating up to 1.5 GHz as a local oscillator. The architecture of Voltage Controlled Oscillator (VCO) is optimized to get better performance, and a phase noise of -111.85-dBc/Hz @ 1 MHz and a tuning range of 250 MHz are gained at a centre frequency of 1.35 GHz. A novel Dual-Modulus Prescaler(DMP) is designed to achieve a very low jitter and a lower power. The settling time of PLL is 80 μs while the reference frequency is 400 KHz. This monolithic frequency synthesizer is to integrate all main building blocks of PLL except for the low pass filter, with a maximum VCO output frequency of 1.5 GHz, and is fabricated with a 0.18 μm mixed signal CMOS process. Low power dissipation, low phase noise, large tuning range and fast settling time are gained in this design.  相似文献   

14.
A low-power voltage-controlled oscillator (VCO) with current-switched technique is presented. The circuit is implemented in 0.18-μm CMOS technology. In the design, a large inductor is used for low-power and low-phase-noise application, whereas a switched capacitor bank and two pairs of MOS varactors are adopted for coarse tuning and fine tuning respectively. The proposed VCO is biased at the boundary of the current and voltage limited region for a good trade-off between power consumption and phase noise. The phase noise of the proposed VCO is reduced in each sub-band by a current-switched technique, and a phase noise improvement of as much as 2.75 dB has been achieved. The proposed VCO has a measured tuning range of 15.2 % from 4.34 to 5.05 GHz and dissipates an average power of 3.78 mW at 1.2 V supply voltage, whereas its measured phase noise and figure of merit FOMT are ?113.0 dBc/Hz and ?183.7 at 1 MHz offset from the frequency of 4.36 GHz respectively.  相似文献   

15.
In this paper, a 3–10 Gbps source synchronous receiver macro in 65 nm CMOS technology is presented. The receiver consists of 5 data lanes and a forwarded clock lane, featuring a wide frequency operating range. In the forwarded clock lane, a duty cycle correction loop is implemented to cancel the clock duty cycle distortion. A DLL with a wide locking range from 1 to 6 GHz is designed to generate quadrature clocks. Time-averaging is used to improve clock quality. A linear equalizer with level shift and offset cancellation is implemented in the DC coupled data lane, which compensates the channel loss and shifts the data DC level to accommodate NMOS input amplifier to save power. The phase interpolator based CDR design is optimized and a ring counter based phase interpolator controller is implemented to realize the phase rotation. The power consumption for the 5+ 1 lane RX PHY core running at 10 Gbps is 175 mW or 3.5 mW/Gbps under 1.2 V power supply, achieving a BER < 1e-12.  相似文献   

16.
A wideband frequency synthesizer is designed and fabricated in a 0.18 μm CMOS technology. It is developed for DRM/DRM+/DAB systems and is based on a programmable integer-N phase-locked loop. Instead of using several synthesizers for different bands, only one synthesizer is used, which has three separated divider paths to provide quadrature 8-phase LO signals. A wideband VCO covers a frequency band from 2.0 to 2.9 GHz, generates LO signals from 32 to 72 MHz, and from 250 to 362 MHz. In cooperation with a programmable XTAL multi-divider at the PLL input and output dividers at the PLL output, the frequency step can be altered from 1 to 25 kHz. It provides an average output phase noise of ?80 dBc/Hz at 10 kHz offset, ?95 dBc/Hz at 100 kHz offset, and ?120 dBc/Hz at 1 MHz offset for all the supported channels. The output power of the LO signals is tunable from 0 dBm to +3 dBm, and the phase of quadrature signals can also be adjusted through a varactor in the output buffer. The power consumption of the frequency synthesizer is 45 mW from a 1.8 V supply.  相似文献   

17.
利用直接数字频率合成(DDS)和锁相环(PLL)技术相结合的混合频率合成方案,研制了一种C波段宽带、高频率分辨率、快速线性扫频的频率源。为了给PLL 提供低相位噪声的宽带扫频参考信号,选用ADI 的DDS芯片AD9914,并利用阶跃恢复二极管(SRD)高次倍频电路结合二倍频器产生高达3400 MHz 的时钟信号。通过上位机配置AD9914 内部频率调谐字和数字斜坡发生器,产生512.5-987.5MHz 的扫频参考信号,其频率分辨率可精细到赫兹量级。选用低附加噪声的鉴相器和宽带VCO 芯片设计C 波段锁相源,在宽带工作频率范围内对DDS 扫频信号进行快速跟踪,并有效抑制杂散信号。实测结果表明,该扫频源工作频率为4. 1- 7. 9 GHz,在频率分辨率配置为0. 38 MHz 时,单向扫频周期为1 ms,扫频线性度为1. 58×10-6 。单频点输出时相位噪声优于-114 dBc/ Hz@ 10 kHz和-119 dBc/ Hz@ 100 kHz,杂散抑制优于69 dBc。  相似文献   

18.
A fully integrated fast-settling Fractional-N phase-locked loop (PLL) is presented. Based on the \(\Delta \varSigma\) modulator and I/Q generator architectures, the frequency synthesizer covers a frequency range of 130 MHz-1 GHz with a 3-KHz channel step. The constant loop bandwidth over the above tuning frequency ranges is achieved without modifying low pass filter parameters. The current of charge pump \(Icp\) is programmed not only to compensate the variation of voltage-controlled oscillator gain \(Kvco\), but also for adapting to the change of divider ratio \(N_{m}\). This calibration process is carried out in an open-loop condition for a small settling time. The proposed synthesizer was fabricated in 0.18 µm CMOS process. The measurement results show that the whole synthesizer PLL draws 11.3-mA including I/Q generator from 1.8 V supply. The out-of-band phase noise is ? 123 dBc/Hz@10 MHz with a 433 MHz carrier frequency after the divider. The normalized \(\left( {Icp*Kvco} \right)/N_{m}\) which is equivalent to the variation of PLL loop bandwidth ranges from ? 6 to 6%.  相似文献   

19.
A novel phase-locked loop that has a loop filter consisting of only one capacitor is designed with a frequency voltage converter (FVC). Simulation and measurement results show that the proposed phase-locked loop (PLL) works stably demonstrating that the FVC works effectively as a resistor. Measurement results of the proposed PLL fabricated in a one-poly six-metal 0.18 μm CMOS process show that the phase noise is ?109 dBc/Hz at 10 MHz offset from 752.7 MHz output frequency.  相似文献   

20.
Dynamic voltage and frequency scaling (DVFS) is an efficient method to reduce the power consumption in system on-chip. To support DVFS, multiple supply voltages are generated based on different work load frequencies and currents using on-chip DC–DC voltage converter. In this paper a frequency tunable multiple output voltage switched capacitor based dc–dc converter is presented. An analog to digital converter and phase controller is used in the feedback to change the switching frequency and duty cycle of the converter. An input voltage of 1.8 V is converted to 0.6 and 0.8 V for low and high signal frequency respectively. The proposed 2-phase switched capacitor architecture with gain setting of 1:2 is designed with the 90 nm technology. An output ripple of 45 mV is observed and the maximum transient response time of the converter is 17.3 ns (= 58 MHz).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号